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Abstract - Under inter- and intra-die parameter variations, delay 
of a pipelined circuit follows a statistical distribution. Hence, a 
pipelined circuit suffers yield loss with respect to violation of 

target delay constraint unless an overly pessimistic worst-case 
design approach is followed. We propose a statistical approach 
for pipeline design to enhance yield with respect to a target delay 
under an area budget. Right choice of the number of pipeline 
stages to enhance yield under an area constraint is addressed 
using simple statistical yield models. Next, individual stages are 
designed for maximizing yield under area constraint for the 
stages. Once the independently optimized stages are combined to 
form a pipeline, we propose a final global optimization step to 

improve pipeline yield with no area overhead, based on a concept 
of area borrowing. Optimization results show that, the proposed 
statistical design approach for pipeline improves the overall yield 
up to 12% over conventional design for equal area. 

1. Introduction 

Increasing inter-die and intra-die variations in the process 
parameters, such as channel length (L), width (W), oxide 
thickness (Tox), threshold voltage etc., result in large variation in 
the delay of logic circuits [1]. Consequently, designing high-
performance circuits with high yield (probability that the 

fabricated chip will meet a certain delay target) under parameter 
variations has emerged as a serious challenge in nano-meter scale 
designs [1, 5]. Pipelining data and control paths are popularly 
used in high-performance system design to improve throughput 
[3]. In a synchronous pipelined circuit, the throughput is 
determined by the slowest pipe segment [3]. However, under 
parameter variations, as the delay of a stage follows statistical 
distribution, the slowest stage is not readily identifiable.  

Overall pipeline delay also follows a statistical distribution, which 
depends on the delay distributions of individual stages and the 
electrical/spatial correlation among them. For all practical 
purposes, delay distribution of a stage can be assumed to be 
Gaussian, and, thus, delay distribution for a pipelined circuit can 
also be estimated as a Gaussian random variable [1, 6, 10]. Since 
delay of a pipeline is statistical in nature, pipeline yield with 
respect to meeting a delay target depends on the nature of the 

delay distribution, which, for a Gaussian distribution is 
determined by the mean (µ) and standard deviation ( ) of the 
distribution.  
Delay of a pipelined circuit determines its operating frequency 
and throughput. During the design phase of a pipeline, overall 
delay of the pipeline is changed by reducing the delay of the 
slowest stage.  There are multiple design techniques to trade-off 
pipeline delay for power or die-area using logic synthesis, 
gate/wire sizing etc. Unless a worst-case design is chosen for a 

pipeline, which guarantees to satisfy the target delay at the worst 
process corner, a pipeline design is bound to suffer yield loss in 
terms of failure to meet a delay constraint. However, a worst-case 
design is overly pessimistic in terms of area/power requirement. 

Hence, a design methodology, which addresses yield optimization 
of the pipeline under statistical delay variation with minimum 
impact on area/power, is becoming mandatory. 
Traditionally, the pipeline operating frequency has been enhanced 
by: a) increasing the number of pipeline stages, which, in essence, 
reduces the logic depth and hence, the delay of each stage; and b) 
balancing the delay of the pipe stages, so that the maximum stage 
delay is optimized [3]. However, it has been shown that if intra-

die parameter variation is considered, reducing the logic depth 
increases the variability (defined as standard deviation/mean) [5]. 
A gate sizing technique to ensure yield under process variation 
circuits has been proposed in [2]. Statistical timing analysis in 
combinational circuits and latch-based pipeline designs under 
parameter variations are addressed in [1, 6, 7]. However, none of 
these works present a statistical design of pipelined circuit to 
enhance yield under a design constraint on area.  

In this paper, we propose a statistical design framework for 
maximizing yield of a pipelined circuit under area budget.  We 
have observed that pipeline yield depends on the number of 
pipeline stages; delay distribution of individual stages and 
spatial/electrical correlations among stage delays. It is also 
observed that irrespective of the correlation among stages, 
improving yield of a stage also improves the yield of the pipeline. 
We have proposed a hierarchical design flow for pipelined 

circuits consisting of three steps: 1) selection of appropriate 
number of pipeline stages (N); 2) optimization of individual 
stages for maximizing yield of a stage under constraint on stage 
area; and 3) a final optimization step on the complete pipeline 
after the stages are independently optimized.  
Note that, unlike conventional pipeline design, we add an 
additional optimization step (step 3) in our design flow. This is 
based on the observation that even though individual stages are 

optimized for yield under stage area constraint, yield of some 
stages can be perturbed (at the expense of change in stage area), 
to improve the overall yield of pipeline. Let us take an example 
pipeline with overall yield Y consisting of stage 1 and 2, which 
are optimized to achieve pipe-stage yield of Y1 and Y2 for target 
area of A1 and A2, respectively. Now, let us assume that an 
increase in area targeted for stage 1 by A1 improves the pipeline 
yield by Y. Now, if we let stage 2 compensate for the area 
increase in stage 1, yield for stage 2 may decrease. However, if 
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Figure 1: Plot of yield vs. number of stages (a) with only intra-

die variation (b) with inter-die and intra-die variation for a 

120-long inverter chain pipeline 
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the decrease is less the Y, we have a net increase in pipeline 
yield for the same total area. We refer to this concept as area 

borrowing. To make the concept of area borrowing effective, we 
propose a heuristic for area allocation to the stages during step 3.  

The rest of the paper is organized as follows; section 2 formulates 

the problem of yield enhancement of a pipelined circuit under an 
area constraint. In section 3 we present the pipeline design flow 
under statistical delay variation. Section 4 presents the yield 
improvement results on an example pipeline. Finally, section 5 

concludes the paper.

2. Problem Formulation 

To enhance the yield of a pipeline design under statistical delay 

variation, we need to consider its impact on the overall area (i.e. 
area of combinational logic + area of sequential elements). Thus, 
the pipeline yield enhancement problem can be formulated as:   

Maximize  { }( ), , ; 1, ...,
i i

Yield Y f N i Nµ σ= = ∀ =

 Subject to ( )
1

N

C O M B i S E Q i T A R G E T
i

A A A− −
=

+ ≤∑
(1) 

where, N is the total number of pipeline stages, µi and σi are the 

mean and the standard deviations of the delay of the ith stage, 
ACOMB-i is the and ASEQ-i are the area of the combinational and the 
sequential stage logic, respectively, and ATARGET is the maximum 
bound on the total area. The function ‘f’ represents the 
dependence of the yield (Y) on the total number of stages, and the 
delay distribution of the individual stages. 

The overall delay of a pipeline is determined by the delay of the 
slowest pipeline stage. Hence, the overall pipeline delay (TP) is 
given by:  

( )1 2
1,...,

( ) , , ...,P i N
i N

T M ax SD M ax SD SD SD
=

= = (2) 

where, SDi represents the delay of the ith stage which is defined as 

Gaussian random variable (SDi ~ N(µi,σi). The mean and the 

standard deviation of TP can be estimated by following the 
method proposed in [7, 10].  
Using (2), the yield of the pipeline design (i.e. probability of 
meeting a target delay Td) is defined as:  

1,...,
1,...,

Pr{max } Pr{ ( )}
i d i d

i N
i N

Y SD T SD T
=

=

= < = < (3) 

The exact estimation of (3) is possible by assuming the stage 

delay (SDi) to be independent Gaussian random variable, as:   

1 11,...,

Pr{ ( )}
N N

d i
i d i

i ii N i

T
Y SD T Y

µ
σ= ==

⎛ ⎞−= < = Φ =⎜ ⎟
⎝ ⎠

∏ ∏ (4) 

where, Φ represents the Cumulative Distribution Function (CDF) 

and Yi is the yield of the ith stage. If the variables are correlated 

such a simplification is not possible. To estimate PD considering 

correlated SDis, we approximate the overall pipeline delay (TP) as 

a Gaussian random variable (with µT and σT estimated using the 

method described in [10]). Using this assumption PD is given by: 

Pr{ } TARGET T
D D TARGET

T

T
P T T

µ
σ

⎛ ⎞−= ≤ = Φ⎜ ⎟
⎝ ⎠

(5) 

2.1 Impact of number of stages on yield and area 

From (1), it can be observed that any change in the number of 

stages changes the pipeline yield with respect to a target delay, 
latency and total area. Below, we discuss these effects in details. 
(1) The effect of number of stages on the yield variation:

Increasing number of stages has a positive impact on the yield. 
The actual amount of effect depends on the logic depths and 
measure of inter and intra-die variations. For example, let us 
consider pipelining of a chain of 120 identical inverters. The 
number of stages is chosen in such a way that each stage has 
equal number of inverters. It was observed that, any N greater 
than or equal to 4 ensures the target yield of 90% at 450ps (Fig 

1(a)) in the presence of only intra-die variation ( vth_intra= 30mV). 
However, under both inter and intra-die variation ( vth_inter=
30mV, vth_intra= 30mV), delay analysis show that number of 
stages required to ensure the same yield (at the same target delay) 

is 5 or more (Fig. 1(b)).  Hence, proper choice of the number of 
stage is necessary to enhance yield under process variation. 

(2)  The effect of number of stages on the total area:
The choice of N affects the total area in different ways depending 
on whether the design area is dominated by area of the 

combinational logic or sequential elements. When the total design 
area is dominated by the combinational logic, increasing N (which 
increases the number and area of sequential elements) helps to 
improve yield without much area penalty.  If the area of the 
sequential elements is higher, increasing N may result in a large 
area overhead. Under this condition, if multiple N realizes the 
same yield, the lowest value of N helps to minimize the total area. 
Hence, a proper choice of N to enhance yield under an area 

constraint depends on the relative contribution of the 
combinational and sequential elements to the total design area.

2.2 Delay distribution of the individual stages 

It can be observed from (3) and (4) that the yield strongly depends 

on the delay distribution parameters of the individual stages. In 
particular, increasing the mean delay of the individual stages 
increases the mean delay of the overall pipeline, thereby reducing 
the yield. Hence reduction of the mean and the standard deviation 
of the stage delays essentially increase the probability that each 
stage meets the delay target (this probability is used here as the 
stage yield). However, reducing the mean delay of the stages 

increases the stage area. To understand that let us re-consider the 
pipelined circuit of 120 inverters described in the previous sub-
section. In this circuit, increasing the area of the inverters in each 
stage reduces the overall pipeline delay (thereby improving the 
yield) but increases the circuit area (Fig. 2(a)).  It is interesting to 
note that, using the larger inverter size the target yield (i.e. 90% at 
target delay of 450ps) can be realized using a smaller number of 
stages (4 stages instead of 5 as shown in Fig. 2(b)). However, the 

overall circuit area increases (Fig. 2(b)). Hence, to enhance yield 
of the overall pipeline under an area constraint, each stage needs 
to be individually optimized to maximize “stage yield” while 

ensuring the stage area constraint.
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Figure 2:  Plot of (a) design delay and total area (b) yield  

(for a target delay of 450ps) vs. number of stages 
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2.3 Property of the “Max Function” 

From (5) it can be understood that the delays of the individual 

stages do not completely determine the overall yield. The overall 
yield is determined by combining the individual stage yields and 
correlation among themselves using the “Max function” (2) [10].  
Traditionally, the pipeline stages are designed for equal delay to 

maximize the throughput [5]. Such that considering independent 
stages a pipeline design represent the condition Y1 = Y2 = … = YN

= Y1/N. However, from (4) it can be observed that a proper 
allocation of yield (say Yi ) among different stages such that 
(Y1 Y2 …YN ) > (Y1Y2…YN) can improve the overall yield. 
However, such area allocation has to consider its impact on the 

total area.
It should be noted that, as the target delay of a combinational 
logic increases to dD, the area required to realize the logic with 
that target delay reduces by dA (Fig. 3(a)). This is due to the fact 
that smaller sized logic gates can be used to realize a larger target 
delay. However the rate of change of area with delay (slope of 
area vs. delay curve A D∂ ∂ ) varies over a range for different target 

delay. This observation plays an important role in enhancing the 
pipeline yield under constant area. 
Let us now analyze the use of proper “stage area” allocation for 

maximizing the yield of pipeline under an area constraint. To 
show this effect, we have performed experiments with a 3-stage 
ALU-Decoder circuit pipeline structure. First, we optimized the 
combinational logic of each stage for minimum area (using 
independent stage delay model (4) for simplicity, in reality stage 
delays are correlated and corresponding results are presented in 
section 4) for a specific target pipeline yield (say Y = 0.8). For 
pipeline yield target Y = 0.8, yield target for each stage becomes 
(0.80)1/3 = 0.9283. In the next step, we have introduced proper 

imbalance among the three stages (by transistor sizing) in such a 
way that the total area remains constant but overall design yield 
improves. To understand the reason behind this yield 
improvement, let us consider the area vs. delay curves for each 
stage (Fig. 4). They are initially designed for equal yields and 
delay distribution parameters as indicated by line L1 in Fig. 4. 
This results in yield of Y0 for each stage (pipeline yield = Y0

3). 
The total area for this design is the sum of the stage areas 

(A1+A2+A3). Now, we allocate a lower yield to stages 1 and 3 by 
reducing the area of stage 1 and 3 (by dA1 and dA3) which 
increases their delays to line L2 in Fig. 4. This reduces yields of 
stages 1 and 3, to Y1, Y3 (say Y1 = 0.915, Y2 = 0.92, and both are 
less than Y0). However, this extra area (dA1 + dA3) can be added 
to the stage 2, thereby reducing its delay to line L3. This improves 
yield of stage 2 (i.e. Y2 = 0.98 > Y0). In this case, 

( ) 3
1 2 3 00.825 ( 0.8)Y Y Y Y× × = > = , and hence, the overall pipeline 

yield improves. For different target yields this trend has been 

observed in the 3 stage pipelined circuit as shown in Fig. 3(b).
However, introducing excess imbalance in stage delays by area 
allocation, we might get diminishing returns when pipeline 
performance is governed by the mean delay (µ) of the slowest 
stage. Hence, it is necessary to appropriately apply area allocation 
among the stages. Such an area allocation is possible only if all 

the stages are considered together after individually and 
independently optimizing each pipeline stage. When correlations 
among the stage delays are considered similar trend is observed in 
our simulations results (section 4).   

2.4 Complete optimization of pipeline for yield 

enhancement 

Based on the above observations, we have developed a general 

design flow for enhancing yield under an area constraint (i.e. to 
solve the problem in (1)). Fig. 5 shows different steps of the 
design flow for yield enhancement for a target delay (Td) and area 
(ATARGET). As the number of pipeline stages (say, N) has a strong 
impact on the overall pipeline yield and area, in the first step we 

choose an optimum value of N that ensures a certain target yield 
while minimizing the total area. In the second step we optimize 
each stage individually for the target delay Td and for the yield Yi.
In the final step we perform the total pipeline optimization by 
considering all the stages together to enhance the yield by proper 
area allocation for different stages. In the next section we present 
the detailed procedure for each step in Fig. 5.

3. Pipeline Design Flow under Statistical Delay 

Variation  

In this section, we propose a statistical design flow for a pipelined 

400 420 440 460 480
4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

delay (ps)

A
re

a 
(µ

 s
q.

 m
m

)

dD

A

B−dA

   
60

65

70

75

80

85

90

Target Yield

A
ch

ie
ve

d 
yi

el
d 

(%
)

Individually optimized
Proposed method

                        (a)    (b) 

Figure 3:  (a) Area vs. delay plots of a logic stage; (b) Effect of 

pipeline stage area allocation on design yield 0.85 0.9 0.95 1 1.05 1.1

0.032

0.036

0.04

0.044

Normalized delay

A
re

a

stage 1
stage 3
stage 2 

−dA1

−dA3

dA2

L1

L2

L3

Figure 4: Effect of area allocation on pipeline design yield
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stage under individual stage area constraint
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statistical optimization on the complete pipeline 

1.   Choose number of pipeline stages (N) for ATARGET

using statistical analysis; allocate individual stage areas
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Figure 5: Complete pipeline design optimization 

methodology for yield enhancement
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circuit for yield enhancement under area (or power) constraint. As 
described in section 2.4, we divide the complex problem of yield 
enhancement for pipeline design in three separate steps (Fig. 5). 
We propose statistical design approach for all three steps. For 
steps 2 and 3, we have used transistor size as the design parameter 

to vary. We have shown how existing gate-level sizing algorithms 
can fit into the proposed statistical pipeline design framework. 
However, the proposed framework is equally amenable for other 
optimization techniques (e.g. logic synthesis). 

3.1 Choice of number of pipeline stages (N)
Number of pipeline stages (N) is typically specified by 
architectural constraints and performance (throughput) 
requirements of the design from system level analysis. However, 
if no specification of the number of stages is available from the 
system level we can use a simplified approach to obtain an initial 
estimate of the number of stages (N). Such an approximate 
estimation will be useful while pipelining one particular 
functional unit (e.g. multiplier). The N-selection problem can be 
formalized as: 

Select N for total logic depth LT,

Such that  Y is maximized for Td,

Subject to ( )
1

N

COMB i SEQ i TARGET
i

A A A− −
=

+ ≤∑
(6) 

As discussed in section 2.1, the proper choice of N is determined 

by the yield requirement and the target area. A higher value of N
increases the design yield at the cost of higher area for the 
sequential elements. On the other hand, increasing the logic area 
helps to increase the yield by lowering the delay of the individual 
stages. Hence, as discussed in the section 2.1, the impact of the 
choice of N on the total area, is determined by the relative 
magnitude of the logic area and flip-flop area. To understand this, 
let us consider a pipeline design of 120-long chain of inverters.

Using nominal size for the inverters 90% design yield is ensured 
for N  5. Upsizing the inverters (by a factor ~ 1.6, which 
increases the total combinational logic area by the same factor) 
reduces both the mean and the variability of the stage delays and 
helps to realize 90% design yield with N = 4 (smaller latch area) 
(Fig. 2(b)). However, it can be observed that the total area with N
= 4 is lower than that with N = 5 in this design (Fig. 2(b)). Hence, 
in this example N = 5 is a better choice. Thus, under an area 
constraint the proper choice of N is required to maximize the 

yield. We will now present a simple method to estimate the 
optimum number of stages required to maximize the yield. 

First, we estimate the maximum (Nmax) and minimum (Nmin)
bounds of N considering combinational logic is designed with 

minimum and maximum sized logic gates, respectively (assuming 
constant size for the sequential elements). An exact estimate of 
the optimum value of N (Nmin < N < Nmax) can be obtained by 
performing detail timing analysis on the complete design. 
However, such an approach is very difficult at the initial design 
phase due to lack of exact circuit knowledge and the large 
computation time. Hence, we propose to use a simple approach 
for the selection of N. We first analyze the circuit to estimate the 

total number of logic depth (say, LT) in the critical path. We also 
assume that, due to pipelining the total logic depth of the critical 
path gets equally divided among the stages (i.e. all stage has equal 
logic depth, say L). To estimate the delay of a stage, we assume 
an equivalent inverter chain model. Using this model, the stage 
delay distribution parameter (mean (µstage) and standard deviation 
( stage) are computed as:  

 and stage inv stage invL Lµ µ σ σ= = (7) 

where, µinv and inv are the mean and the standard deviation of the 

delay of an inverter, respectively. Using the above assumptions, 
for a particular choice of N we estimate the maximum area that 
can be used by each logic stage (ACOMB) using the total target area 
(ATARGET) and the area of a sequential element (ASEQ) (line 4, 
Table I). The equivalent inverter chain model of the stages is used 
to evaluate the µstage and stage as follows: 

1. Area of an inverter = Ainv = ACOMB/L 

2. Compute µinv and inv for area Ainv using circuit 

simulation 

3. Compute µstage and stage

(8) 

Using µstage and stage computed from (8) we estimate the pipeline 

yield assuming all the stages to be uncorrelated (using (4)). 
Finally we select the value of N that gives maximum design yield. 
Table I describes the procedure for N selection. It should be noted 
that, increasing the number of stages (under no area constraint) 
has a positive impact on yield, as described in section 2.1. Hence, 
if N selection process as described above, produces multiple 
values of N (all vales correspond to the same total area, ATARGET)

that realizes the same maximum yield, we propose to use the 
highest value. We have applied the above procedure to the 

Table I: Procedure  to select the number of  pipeline stages  

to maximize yield under an area constraint

Input: Area constraint (ATARGET), individual flip-flop area 
(ASEQ), and total logic depth (LT)
Output: Number of stages (N) maximizing yield for ATARGET

1. Compute Nmin using: 
max min

  *
TARGET COMB SEQ

A A A N
−

= +
2. Compute Nmax using: 

min max
  *

TARGET COMB SEQ
A A A N−= +

/*ACOMB-max, ACOMB-min are stage areas with max. and min. sized 
gates */ 

3. for nstage = Nmin to Nmax do      
    /* assuming equal depth (L) and area (ACOMB) for all stages */ 

4.      [ ]* /
COMB TARGET SEQ stage stage

A A A n n= −  and /
stageT nL L=

5.      Compute (µstage , stage ) from ACOMB and L

6.       Compute pipeline yield for number of stage = nstage as:        

TARTGET stage

stageover all stages
nstageY

T µ
σ

=
−

Φ
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

∏
7. end for      
8. Select N corresponding to the max. value of Ynstage.
9.  If multiple values of nstage realizes the max. yield, select the    

highest value of nstage.
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example 120 inverter-chain pipeline. It can be observed that for 
smaller target area design yield is maximized for N = 6. 
Increasing the target area increases the scope of increasing 
number of stages as N = 8 is the best choice for a higher target 
area (Fig. 6).  

3.2 Optimization of individual stages
Once the number of stages (N) is determined, individual stages of 
the pipeline can be optimized for the given design objective. In 
our case, each pipeline stage needs to be optimized for yield 
under an area constraint for the stage. The problem can 

formalized as below:  

Maximize        Yi for the ith stage

Subject to       
- - -COM B i SEQ i TARG ET i

A A A+ ≤ (9) 

The solution of the above problem can be obtained in two steps: 

a) allocation of target area to each pipeline stage, and b) 
optimizing yield of each stage for the target area allocated to that 
stage. We propose a simple heuristic to allocate target area to the 
individual stages based on the complexity of the stage logic. We 
assume that the complexity of the logic is linearly dependent on 
the number of logic gates. In that case the target area for the ith

stage can be determined by:  

_ -
 ( /  ) * -  

C OM B i TAR GE T T i SE Q i
A A L L A≤ (10) 

where, ATARGET is the pipeline target area, LT is total logic depth 
and Li is logic depth of the ith stage.  
To perform the second step, we use a gate-level transistor sizing 

algorithm as proposed in [4] using Lagrangian Relaxation (LR) 
based sub-gradient optimization. In [4], a solution for convex 
gate-level sizing problem is proposed to minimize maximum 
delay under an area constraint. We use the LR-based algorithm 
for maximizing yield of a stage for a given target area. We 
assume that for a considerable variation in mean of a stage delay 
distribution (µi) with transistor sizing, the standard deviation of 
stage delay ( i) varies in the same direction. We have observed 

this with Monte-Carlo simulation on several logic stages.  Under 
this assumption, the sizing algorithm for minimizing maximum 
mean delay of a circuit can be used to maximize yield under 
statistical delay distribution.

3.3 Global optimization of pipeline yield under area 

constraint 
In a conventional pipeline design flow, individual stages are 
designed and optimized independently of others for a given 

design objective before they are combined together to form a 
pipeline.  We propose incorporating a final design step on the 
complete pipeline to improve yield while maintaining area (or 
power). Under statistical design approach, a final optimization of 
the complete pipeline design can improve the overall design yield 
due to the following reason:  

• Although individual stages are optimized for the best possible 

yield under given stage area constraint, overall yield for the 
complete pipeline may have opportunity for improvement 

without area overhead. As mentioned before in section 2, we 
can exploit the nature of “Max function” to achieve this.  

The optimization problem for maximizing yield of a pipeline 
under a given area budget can be formulated as: 

Maximize  
( )T A RG ET T

T

T
Y

µφ
σ

−=  /*Y is pipeline yield, µT is 

mean,  T  is STD of pipeline delay */   

Subject to )(
1

∑
=

N

i
iStageArea  = ATARGET (Constant).    

iii UxM ≤≤ , 1,...., .i N=   /*xi is the size factor for a logic gate. 

Mi and Ui are the min. and max. size factors of a gate*/

We have developed an algorithm to solve the above problem 

efficiently. Table II presents this iso-area yield improvement 
algorithm. The algorithm employs the principle of divide-and-
conquer, where we size one pair of stages at a time in such a way 
that the combined yield for the pair of stages is improved while 
the total design area is unchanged. Moreover, statistical timing 
analysis (based on statistical static timing analysis or SSTA as 
proposed in [9]) is performed over the complete pipeline, 
although the sizing is done for only one stage. It helps to make the 

algorithm computationally efficient, since we avoid application of 
the sizing routine on all the stages simultaneously. 
The principal idea is to optimally trade-off yield among the 
pipeline stages under a constant area. We make use of area vs. 
delay trends (Fig 3(a)) of each stage to determine which stage is 
appropriate for improving yield (with increase in area) and which 
stage is appropriate for compensating the area (with certain 
decrease in yield) We refer this concept as area borrowing to 

imply that overall yield of the pipeline can be improved by 
selectively increasing area of some stages, while decreasing the 
same amount of area from other stages.  

First, we determine the position of each stage in their area vs. 
delay curve, which essentially indicates how aggressively the 
stage is optimized for yield. We rank the stages in the ascending 

order of their slopes (
i

i

AR
D

∂= ∂
) of the area versus delay curves 

(step 5, Table II). Next, we create  N/2 pair of stages by 

grouping each ith stage with the (N-i)th stage in the sorted list of 
stages (step 6 - 8). For example, if a 5-stage pipeline has area vs. 
delay slopes as R3 > R5 > R2 > R1 > R4, then according to the 
above rule we choose (R3, R4) and (R5, R1) as two pair of stages. 
Now for each pair, we enhance the yield of the stage with smaller 

slope (Ri) at the expense of certain area increase (∆Ai) using 

transistor sizing algorithm described in section 3.2 (step 11). The 

area overhead (∆Ai) thus incurred is compensated by the other 

element in the pair (with higher slope) at the expense of a 

Table II: Algorithm  for yield enhancement of a pipelined 

circuit under an area constraint

Input: A pipelined circuit, statistical delay parameters for N
logic stages, target delay (Td), target area (ATARGET)
Output: Pipelined design with enhanced yield  

1.   for each stage i = 1 to N do 

2.         Perform statistical timing analysis 
3.         Compute the area vs. delay curve  
4.   end for 

5.   Sort the stages (Si) in ascending order of their Ri values  

      /* select the pairs of stages for yield optimization */ 

6.   for each stage i = 1 to  N/2 do

7.       
-

{ ,  }
i i N i

P S S=      /* create stage pairs */ 

8.   end for

9.   for each stage pair Pi from i = 1 to  N/2 do 

10.         Determine ∆Ai for the stage pair 

11.         Resize stage (Si) with lower Ri to improve yield at the   

expense of ∆Ai

12.         Resize stage (SN-i) with higher slope to compensate ∆Ai

13.   end for 
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decrease in overall pipeline yield (step 12). However, due to the 
difference in slopes between the two stages in a pair, the process 
always increases the combined yield of the stage pairs. In the 
process, pipeline stages move closer in area vs. delay curve i.e. 
tend to be balanced with respect to their Ri values.   

It is worth noting that for a particular stage pair ({Si, SN-i}), 
optimal possible yield that can be obtained by the area borrowing 

concept depends on the selection of exact area ∆Ai to trade 

between them (step 10). We use a simple iterative solution to 

obtain the best choice of ∆Ai for a stage pair by incrementally 

changing ∆Ai at successive steps of a fixed step size. 

The LR based sizing algorithm proposed in [4] has a 
computational complexity of O(n2) where n is the number of logic 
gates to size. For m pipeline stages each having n gates the 
simultaneous sizing approach runs with a complexity of O(m2n2)
(with space complexity of O(mn)). The proposed algorithm 
improves the complexity to O(mn2) (with space complexity of 

O(n)). The complete pipeline design optimization algorithm 
proposed here is significantly faster and takes much less storage 
compared to the case where all the stages are sized 
simultaneously.  

4. Results 
In this section, we present yield improvement results with the 
proposed design methodology for two example pipelines. The 

result of yield improvements obtained by applying the proposed 
yield optimization algorithm to a 3-stage ALU-Decoder pipeline 
is given in Fig. 3(b) (section 2.3).We first individually optimize 
the stages for target delay of 175ps and 180ps. The stages are then 
combined together to realize the complete pipeline resulting in the 
yield of 70.5% (for 175ps) and 79% (for 180ps). Application of 
the complete pipeline optimization algorithm improves the yield 
by 15% (from 70.5%) for the target delay 175ps and 7.1% (from 

79%) for the target delay of 180ps over the individually optimized 
design.  
We have also performed experiments with a 4-stage pipelined 
circuit (designed with ISCAS85 benchmark circuits c499, c880, 
c1908, c2670 as the stage logic, and edge-triggered D flip-flops as 
the sequential elements). Initially, we assume that the stage delays 
are independent Gaussian RV and use (4) to compute pipeline 
design yield. Results of the proposed optimization are shown in 
Table III and IV. Here 1st column represents the target delay for 

the pipeline design and 2nd column presents the yield for a 4-stage 
balanced pipeline where individual stages are already optimized 
for equal yield (Y) under the given area budget. Column 3 
presents yield obtained from our proposed methodology. The 4th

column shows the yield improvements. The results show up to 
16% yield improvement (from the initial yield of 73%). The 
scope of improvement gradually reduces with higher target yield. 
We obtain 2% improvement in the case when the initial yield was 

95% (Table III) 

However, when correlation among the stage delays are 
considered, for the same stage delays the overall pipeline yield 
increases but by a lesser amount than the independent case. This 
reduces the yield improvement by small amount. We obtain 12% 
yield improvement from the initial yield of 78%. This yield 
improvement gradually reduces to 1% for initial yield of 96.5% 
(Table IV). 

5. Conclusions 
We have proposed a statistical approach for pipeline design under 
parameter variations for maximizing yield with respect to a target 
area. The proposed hierarchical approach can be easily extended 
for other optimization objective like power. A statistical design 
methodology is proposed using gate sizing algorithm to enhance 
yield of individual stages. Experimental results on example 
pipeline shows that significant improvement in yield can be 
achieved with the proposed statistical approach of pipeline design 

with constraint on die-area. 
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Table-III  Yield improvement  for independent stage delays 

Td (ps) Ybalanced  (%) Yoptimized (%) Yincrease (%)

420 73.13 85.10 16.37

430 74.61 86.12 15.43

440 80.54 90.75 12.66

450 83.70 92.59 10.62

460 84.98 93.45 9.96

470 86.72 92.89 7.15

480 88.28 94.23 6.6

490 89.89 94.39 5.01

500 93.22 95.69 2.65 

510 95.14 97.09 2.05 

Table-IV  Yield  improvement  for correlated stage delays 

Td (ps) Ybalanced  (%) Yoptimized (%) Yincrease (%)

420 78.24 87.79 12.21 

430 81.06 90.03 11.05 

440 84.63 91.78 8.54 

450 87.52 93.62 6.84 

460 89.43 94.27 5.92 

470 90.45 94.72 4.51 

480 92.36 95.8 3.42 

490 92.89 94.77 2.02 

500 95.12 96.31 1.50 

510 96.53 97.32 0.82 
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