
A Statistical Approach to Area-Constrained Yield Enhancement for Pipelined

Circuits under Parameter Variations
*

Animesh Datta, Swarup Bhunia, Saibal Mukhopadhyay, and Kaushik Roy

School of Electrical and Computer Engineering, Purdue University, IN, USA

{adatta, bhunias, sm, kaushik}@ecn.purdue.edu

*

The work is sponsored in part by Marco Gigascale Systems Research

Center (GSRC) and Semiconductor Research Corp. (grant no. 1078.001)

Abstract - Under inter- and intra-die parameter variations, delay
of a pipelined circuit follows a statistical distribution. Hence, a
pipelined circuit suffers yield loss with respect to violation of

target delay constraint unless an overly pessimistic worst-case
design approach is followed. We propose a statistical approach
for pipeline design to enhance yield with respect to a target delay
under an area budget. Right choice of the number of pipeline
stages to enhance yield under an area constraint is addressed
using simple statistical yield models. Next, individual stages are
designed for maximizing yield under area constraint for the
stages. Once the independently optimized stages are combined to
form a pipeline, we propose a final global optimization step to

improve pipeline yield with no area overhead, based on a concept
of area borrowing. Optimization results show that, the proposed
statistical design approach for pipeline improves the overall yield
up to 12% over conventional design for equal area.

1. Introduction

Increasing inter-die and intra-die variations in the process
parameters, such as channel length (L), width (W), oxide
thickness (Tox), threshold voltage etc., result in large variation in
the delay of logic circuits [1]. Consequently, designing high-
performance circuits with high yield (probability that the

fabricated chip will meet a certain delay target) under parameter
variations has emerged as a serious challenge in nano-meter scale
designs [1, 5]. Pipelining data and control paths are popularly
used in high-performance system design to improve throughput
[3]. In a synchronous pipelined circuit, the throughput is
determined by the slowest pipe segment [3]. However, under
parameter variations, as the delay of a stage follows statistical
distribution, the slowest stage is not readily identifiable.

Overall pipeline delay also follows a statistical distribution, which
depends on the delay distributions of individual stages and the
electrical/spatial correlation among them. For all practical
purposes, delay distribution of a stage can be assumed to be
Gaussian, and, thus, delay distribution for a pipelined circuit can
also be estimated as a Gaussian random variable [1, 6, 10]. Since
delay of a pipeline is statistical in nature, pipeline yield with
respect to meeting a delay target depends on the nature of the

delay distribution, which, for a Gaussian distribution is
determined by the mean (µ) and standard deviation () of the
distribution.
Delay of a pipelined circuit determines its operating frequency
and throughput. During the design phase of a pipeline, overall
delay of the pipeline is changed by reducing the delay of the
slowest stage. There are multiple design techniques to trade-off
pipeline delay for power or die-area using logic synthesis,
gate/wire sizing etc. Unless a worst-case design is chosen for a

pipeline, which guarantees to satisfy the target delay at the worst
process corner, a pipeline design is bound to suffer yield loss in
terms of failure to meet a delay constraint. However, a worst-case
design is overly pessimistic in terms of area/power requirement.

Hence, a design methodology, which addresses yield optimization
of the pipeline under statistical delay variation with minimum
impact on area/power, is becoming mandatory.
Traditionally, the pipeline operating frequency has been enhanced
by: a) increasing the number of pipeline stages, which, in essence,
reduces the logic depth and hence, the delay of each stage; and b)
balancing the delay of the pipe stages, so that the maximum stage
delay is optimized [3]. However, it has been shown that if intra-

die parameter variation is considered, reducing the logic depth
increases the variability (defined as standard deviation/mean) [5].
A gate sizing technique to ensure yield under process variation
circuits has been proposed in [2]. Statistical timing analysis in
combinational circuits and latch-based pipeline designs under
parameter variations are addressed in [1, 6, 7]. However, none of
these works present a statistical design of pipelined circuit to
enhance yield under a design constraint on area.

In this paper, we propose a statistical design framework for
maximizing yield of a pipelined circuit under area budget. We
have observed that pipeline yield depends on the number of
pipeline stages; delay distribution of individual stages and
spatial/electrical correlations among stage delays. It is also
observed that irrespective of the correlation among stages,
improving yield of a stage also improves the yield of the pipeline.
We have proposed a hierarchical design flow for pipelined

circuits consisting of three steps: 1) selection of appropriate
number of pipeline stages (N); 2) optimization of individual
stages for maximizing yield of a stage under constraint on stage
area; and 3) a final optimization step on the complete pipeline
after the stages are independently optimized.
Note that, unlike conventional pipeline design, we add an
additional optimization step (step 3) in our design flow. This is
based on the observation that even though individual stages are

optimized for yield under stage area constraint, yield of some
stages can be perturbed (at the expense of change in stage area),
to improve the overall yield of pipeline. Let us take an example
pipeline with overall yield Y consisting of stage 1 and 2, which
are optimized to achieve pipe-stage yield of Y1 and Y2 for target
area of A1 and A2, respectively. Now, let us assume that an
increase in area targeted for stage 1 by A1 improves the pipeline
yield by Y. Now, if we let stage 2 compensate for the area
increase in stage 1, yield for stage 2 may decrease. However, if

2 4 6 8 10 12 14
0

20

40

60

80

90

100

No. of stages

Y
ie

ld
 (

%
)

Td =400
Td =450
Td =500

2 4 6 8 10 12 14
0

20

40

60

80

90

100

No. of stages

Y
ie

ld
 (

%
)

Td =400
Td =450
Td =500
Td =550

 (a) (b)

Figure 1: Plot of yield vs. number of stages (a) with only intra-

die variation (b) with inter-die and intra-die variation for a

120-long inverter chain pipeline

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

the decrease is less the Y, we have a net increase in pipeline
yield for the same total area. We refer to this concept as area

borrowing. To make the concept of area borrowing effective, we
propose a heuristic for area allocation to the stages during step 3.

The rest of the paper is organized as follows; section 2 formulates

the problem of yield enhancement of a pipelined circuit under an
area constraint. In section 3 we present the pipeline design flow
under statistical delay variation. Section 4 presents the yield
improvement results on an example pipeline. Finally, section 5

concludes the paper.

2. Problem Formulation

To enhance the yield of a pipeline design under statistical delay

variation, we need to consider its impact on the overall area (i.e.
area of combinational logic + area of sequential elements). Thus,
the pipeline yield enhancement problem can be formulated as:

Maximize { }(), , ; 1, ...,
i i

Yield Y f N i Nµ σ= = ∀ =

 Subject to ()
1

N

C O M B i S E Q i T A R G E T
i

A A A− −
=

+ ≤∑
(1)

where, N is the total number of pipeline stages, µi and σi are the

mean and the standard deviations of the delay of the ith stage,
ACOMB-i is the and ASEQ-i are the area of the combinational and the
sequential stage logic, respectively, and ATARGET is the maximum
bound on the total area. The function ‘f’ represents the
dependence of the yield (Y) on the total number of stages, and the
delay distribution of the individual stages.

The overall delay of a pipeline is determined by the delay of the
slowest pipeline stage. Hence, the overall pipeline delay (TP) is
given by:

()1 2
1,...,

() , , ...,P i N
i N

T M ax SD M ax SD SD SD
=

= = (2)

where, SDi represents the delay of the ith stage which is defined as

Gaussian random variable (SDi ~ N(µi,σi). The mean and the

standard deviation of TP can be estimated by following the
method proposed in [7, 10].
Using (2), the yield of the pipeline design (i.e. probability of
meeting a target delay Td) is defined as:

1,...,
1,...,

Pr{max } Pr{ ()}
i d i d

i N
i N

Y SD T SD T
=

=

= < = < (3)

The exact estimation of (3) is possible by assuming the stage

delay (SDi) to be independent Gaussian random variable, as:

1 11,...,

Pr{ ()}
N N

d i
i d i

i ii N i

T
Y SD T Y

µ
σ= ==

⎛ ⎞−= < = Φ =⎜ ⎟
⎝ ⎠

∏ ∏ (4)

where, Φ represents the Cumulative Distribution Function (CDF)

and Yi is the yield of the ith stage. If the variables are correlated

such a simplification is not possible. To estimate PD considering

correlated SDis, we approximate the overall pipeline delay (TP) as

a Gaussian random variable (with µT and σT estimated using the

method described in [10]). Using this assumption PD is given by:

Pr{ } TARGET T
D D TARGET

T

T
P T T

µ
σ

⎛ ⎞−= ≤ = Φ⎜ ⎟
⎝ ⎠

(5)

2.1 Impact of number of stages on yield and area

From (1), it can be observed that any change in the number of

stages changes the pipeline yield with respect to a target delay,
latency and total area. Below, we discuss these effects in details.
(1) The effect of number of stages on the yield variation:

Increasing number of stages has a positive impact on the yield.
The actual amount of effect depends on the logic depths and
measure of inter and intra-die variations. For example, let us
consider pipelining of a chain of 120 identical inverters. The
number of stages is chosen in such a way that each stage has
equal number of inverters. It was observed that, any N greater
than or equal to 4 ensures the target yield of 90% at 450ps (Fig

1(a)) in the presence of only intra-die variation (vth_intra= 30mV).
However, under both inter and intra-die variation (vth_inter=
30mV, vth_intra= 30mV), delay analysis show that number of
stages required to ensure the same yield (at the same target delay)

is 5 or more (Fig. 1(b)). Hence, proper choice of the number of
stage is necessary to enhance yield under process variation.

(2) The effect of number of stages on the total area:
The choice of N affects the total area in different ways depending
on whether the design area is dominated by area of the

combinational logic or sequential elements. When the total design
area is dominated by the combinational logic, increasing N (which
increases the number and area of sequential elements) helps to
improve yield without much area penalty. If the area of the
sequential elements is higher, increasing N may result in a large
area overhead. Under this condition, if multiple N realizes the
same yield, the lowest value of N helps to minimize the total area.
Hence, a proper choice of N to enhance yield under an area

constraint depends on the relative contribution of the
combinational and sequential elements to the total design area.

2.2 Delay distribution of the individual stages

It can be observed from (3) and (4) that the yield strongly depends

on the delay distribution parameters of the individual stages. In
particular, increasing the mean delay of the individual stages
increases the mean delay of the overall pipeline, thereby reducing
the yield. Hence reduction of the mean and the standard deviation
of the stage delays essentially increase the probability that each
stage meets the delay target (this probability is used here as the
stage yield). However, reducing the mean delay of the stages

increases the stage area. To understand that let us re-consider the
pipelined circuit of 120 inverters described in the previous sub-
section. In this circuit, increasing the area of the inverters in each
stage reduces the overall pipeline delay (thereby improving the
yield) but increases the circuit area (Fig. 2(a)). It is interesting to
note that, using the larger inverter size the target yield (i.e. 90% at
target delay of 450ps) can be realized using a smaller number of
stages (4 stages instead of 5 as shown in Fig. 2(b)). However, the

overall circuit area increases (Fig. 2(b)). Hence, to enhance yield
of the overall pipeline under an area constraint, each stage needs
to be individually optimized to maximize “stage yield” while

ensuring the stage area constraint.

2 4 6 8 10 12 14
0

1000

2000

No. of stages

D
e

la
y

(p
s)

2 4 6 8 10 12 14
0

0.5

1
x 10

−3

2 4 6 8 10 12 14

1
x 10

−3

A
re

a
 (

sq
 m

m
)

Nominal sized

Upsized
Delay

Area

2 4 6 8 10 12 14
0

20

40

60

80

100

No. of stages

Y
ie

ld
 (

%
)

2 4 6 8 10 12 14
1

2

3

4

5

6

7

8
x 10

−4

2 4 6 8 10 12 14
1

2

3

4

5

6

7

8
x 10

−4

A
re

a
 (

s
q

 m
m

)

Upsized

Nominal Sized

Area

Yield

(a) (b)

Figure 2: Plot of (a) design delay and total area (b) yield

(for a target delay of 450ps) vs. number of stages

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

2.3 Property of the “Max Function”

From (5) it can be understood that the delays of the individual

stages do not completely determine the overall yield. The overall
yield is determined by combining the individual stage yields and
correlation among themselves using the “Max function” (2) [10].
Traditionally, the pipeline stages are designed for equal delay to

maximize the throughput [5]. Such that considering independent
stages a pipeline design represent the condition Y1 = Y2 = … = YN

= Y1/N. However, from (4) it can be observed that a proper
allocation of yield (say Yi) among different stages such that
(Y1 Y2 …YN) > (Y1Y2…YN) can improve the overall yield.
However, such area allocation has to consider its impact on the

total area.
It should be noted that, as the target delay of a combinational
logic increases to dD, the area required to realize the logic with
that target delay reduces by dA (Fig. 3(a)). This is due to the fact
that smaller sized logic gates can be used to realize a larger target
delay. However the rate of change of area with delay (slope of
area vs. delay curve A D∂ ∂) varies over a range for different target

delay. This observation plays an important role in enhancing the
pipeline yield under constant area.
Let us now analyze the use of proper “stage area” allocation for

maximizing the yield of pipeline under an area constraint. To
show this effect, we have performed experiments with a 3-stage
ALU-Decoder circuit pipeline structure. First, we optimized the
combinational logic of each stage for minimum area (using
independent stage delay model (4) for simplicity, in reality stage
delays are correlated and corresponding results are presented in
section 4) for a specific target pipeline yield (say Y = 0.8). For
pipeline yield target Y = 0.8, yield target for each stage becomes
(0.80)1/3 = 0.9283. In the next step, we have introduced proper

imbalance among the three stages (by transistor sizing) in such a
way that the total area remains constant but overall design yield
improves. To understand the reason behind this yield
improvement, let us consider the area vs. delay curves for each
stage (Fig. 4). They are initially designed for equal yields and
delay distribution parameters as indicated by line L1 in Fig. 4.
This results in yield of Y0 for each stage (pipeline yield = Y0

3).
The total area for this design is the sum of the stage areas

(A1+A2+A3). Now, we allocate a lower yield to stages 1 and 3 by
reducing the area of stage 1 and 3 (by dA1 and dA3) which
increases their delays to line L2 in Fig. 4. This reduces yields of
stages 1 and 3, to Y1, Y3 (say Y1 = 0.915, Y2 = 0.92, and both are
less than Y0). However, this extra area (dA1 + dA3) can be added
to the stage 2, thereby reducing its delay to line L3. This improves
yield of stage 2 (i.e. Y2 = 0.98 > Y0). In this case,

() 3
1 2 3 00.825 (0.8)Y Y Y Y× × = > = , and hence, the overall pipeline

yield improves. For different target yields this trend has been

observed in the 3 stage pipelined circuit as shown in Fig. 3(b).
However, introducing excess imbalance in stage delays by area
allocation, we might get diminishing returns when pipeline
performance is governed by the mean delay (µ) of the slowest
stage. Hence, it is necessary to appropriately apply area allocation
among the stages. Such an area allocation is possible only if all

the stages are considered together after individually and
independently optimizing each pipeline stage. When correlations
among the stage delays are considered similar trend is observed in
our simulations results (section 4).

2.4 Complete optimization of pipeline for yield

enhancement

Based on the above observations, we have developed a general

design flow for enhancing yield under an area constraint (i.e. to
solve the problem in (1)). Fig. 5 shows different steps of the
design flow for yield enhancement for a target delay (Td) and area
(ATARGET). As the number of pipeline stages (say, N) has a strong
impact on the overall pipeline yield and area, in the first step we

choose an optimum value of N that ensures a certain target yield
while minimizing the total area. In the second step we optimize
each stage individually for the target delay Td and for the yield Yi.
In the final step we perform the total pipeline optimization by
considering all the stages together to enhance the yield by proper
area allocation for different stages. In the next section we present
the detailed procedure for each step in Fig. 5.

3. Pipeline Design Flow under Statistical Delay

Variation

In this section, we propose a statistical design flow for a pipelined

400 420 440 460 480
4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

delay (ps)

A
re

a
(µ

 s
q.

 m
m

)

dD

A

B−dA

60

65

70

75

80

85

90

Target Yield

A
ch

ie
ve

d
yi

el
d

(%
)

Individually optimized
Proposed method

 (a) (b)

Figure 3: (a) Area vs. delay plots of a logic stage; (b) Effect of

pipeline stage area allocation on design yield 0.85 0.9 0.95 1 1.05 1.1

0.032

0.036

0.04

0.044

Normalized delay

A
re

a

stage 1
stage 3
stage 2

−dA1

−dA3

dA2

L1

L2

L3

Figure 4: Effect of area allocation on pipeline design yield

Input: Total logic depth (LT), a target delay (Td), target

design area (ATARGET), model of process variations

Output: Optimized pipelined

design with enhanced yield for area ATARGET

2. Perform yield enhancement for each

stage under individual stage area constraint

3. Combine all the stages and perform final
statistical optimization on the complete pipeline

1. Choose number of pipeline stages (N) for ATARGET

using statistical analysis; allocate individual stage areas

Input: Total logic depth (LT), a target delay (Td), target

design area (ATARGET), model of process variations

Output: Optimized pipelined

design with enhanced yield for area ATARGET

2. Perform yield enhancement for each

stage under individual stage area constraint

3. Combine all the stages and perform final
statistical optimization on the complete pipeline

1. Choose number of pipeline stages (N) for ATARGET

using statistical analysis; allocate individual stage areas

Figure 5: Complete pipeline design optimization

methodology for yield enhancement

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

circuit for yield enhancement under area (or power) constraint. As
described in section 2.4, we divide the complex problem of yield
enhancement for pipeline design in three separate steps (Fig. 5).
We propose statistical design approach for all three steps. For
steps 2 and 3, we have used transistor size as the design parameter

to vary. We have shown how existing gate-level sizing algorithms
can fit into the proposed statistical pipeline design framework.
However, the proposed framework is equally amenable for other
optimization techniques (e.g. logic synthesis).

3.1 Choice of number of pipeline stages (N)
Number of pipeline stages (N) is typically specified by
architectural constraints and performance (throughput)
requirements of the design from system level analysis. However,
if no specification of the number of stages is available from the
system level we can use a simplified approach to obtain an initial
estimate of the number of stages (N). Such an approximate
estimation will be useful while pipelining one particular
functional unit (e.g. multiplier). The N-selection problem can be
formalized as:

Select N for total logic depth LT,

Such that Y is maximized for Td,

Subject to ()
1

N

COMB i SEQ i TARGET
i

A A A− −
=

+ ≤∑
(6)

As discussed in section 2.1, the proper choice of N is determined

by the yield requirement and the target area. A higher value of N
increases the design yield at the cost of higher area for the
sequential elements. On the other hand, increasing the logic area
helps to increase the yield by lowering the delay of the individual
stages. Hence, as discussed in the section 2.1, the impact of the
choice of N on the total area, is determined by the relative
magnitude of the logic area and flip-flop area. To understand this,
let us consider a pipeline design of 120-long chain of inverters.

Using nominal size for the inverters 90% design yield is ensured
for N 5. Upsizing the inverters (by a factor ~ 1.6, which
increases the total combinational logic area by the same factor)
reduces both the mean and the variability of the stage delays and
helps to realize 90% design yield with N = 4 (smaller latch area)
(Fig. 2(b)). However, it can be observed that the total area with N
= 4 is lower than that with N = 5 in this design (Fig. 2(b)). Hence,
in this example N = 5 is a better choice. Thus, under an area
constraint the proper choice of N is required to maximize the

yield. We will now present a simple method to estimate the
optimum number of stages required to maximize the yield.

First, we estimate the maximum (Nmax) and minimum (Nmin)
bounds of N considering combinational logic is designed with

minimum and maximum sized logic gates, respectively (assuming
constant size for the sequential elements). An exact estimate of
the optimum value of N (Nmin < N < Nmax) can be obtained by
performing detail timing analysis on the complete design.
However, such an approach is very difficult at the initial design
phase due to lack of exact circuit knowledge and the large
computation time. Hence, we propose to use a simple approach
for the selection of N. We first analyze the circuit to estimate the

total number of logic depth (say, LT) in the critical path. We also
assume that, due to pipelining the total logic depth of the critical
path gets equally divided among the stages (i.e. all stage has equal
logic depth, say L). To estimate the delay of a stage, we assume
an equivalent inverter chain model. Using this model, the stage
delay distribution parameter (mean (µstage) and standard deviation
(stage) are computed as:

 and stage inv stage invL Lµ µ σ σ= = (7)

where, µinv and inv are the mean and the standard deviation of the

delay of an inverter, respectively. Using the above assumptions,
for a particular choice of N we estimate the maximum area that
can be used by each logic stage (ACOMB) using the total target area
(ATARGET) and the area of a sequential element (ASEQ) (line 4,
Table I). The equivalent inverter chain model of the stages is used
to evaluate the µstage and stage as follows:

1. Area of an inverter = Ainv = ACOMB/L

2. Compute µinv and inv for area Ainv using circuit

simulation

3. Compute µstage and stage

(8)

Using µstage and stage computed from (8) we estimate the pipeline

yield assuming all the stages to be uncorrelated (using (4)).
Finally we select the value of N that gives maximum design yield.
Table I describes the procedure for N selection. It should be noted
that, increasing the number of stages (under no area constraint)
has a positive impact on yield, as described in section 2.1. Hence,
if N selection process as described above, produces multiple
values of N (all vales correspond to the same total area, ATARGET)

that realizes the same maximum yield, we propose to use the
highest value. We have applied the above procedure to the

Table I: Procedure to select the number of pipeline stages

to maximize yield under an area constraint

Input: Area constraint (ATARGET), individual flip-flop area
(ASEQ), and total logic depth (LT)
Output: Number of stages (N) maximizing yield for ATARGET

1. Compute Nmin using:
max min

 *
TARGET COMB SEQ

A A A N
−

= +
2. Compute Nmax using:

min max
 *

TARGET COMB SEQ
A A A N−= +

/*ACOMB-max, ACOMB-min are stage areas with max. and min. sized
gates */

3. for nstage = Nmin to Nmax do
 /* assuming equal depth (L) and area (ACOMB) for all stages */

4. []* /
COMB TARGET SEQ stage stage

A A A n n= − and /
stageT nL L=

5. Compute (µstage , stage) from ACOMB and L

6. Compute pipeline yield for number of stage = nstage as:

TARTGET stage

stageover all stages
nstageY

T µ
σ

=
−

Φ
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

∏
7. end for
8. Select N corresponding to the max. value of Ynstage.
9. If multiple values of nstage realizes the max. yield, select the

highest value of nstage.

4 6 8 10 12 14 16
0

20

40

60

80

100

No. of stages (N)

Y
ie

ld
 (%

)

area1
area2
area3

Increasing
area budget

Figure 6: Effect of increasing design area target on N

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

example 120 inverter-chain pipeline. It can be observed that for
smaller target area design yield is maximized for N = 6.
Increasing the target area increases the scope of increasing
number of stages as N = 8 is the best choice for a higher target
area (Fig. 6).

3.2 Optimization of individual stages
Once the number of stages (N) is determined, individual stages of
the pipeline can be optimized for the given design objective. In
our case, each pipeline stage needs to be optimized for yield
under an area constraint for the stage. The problem can

formalized as below:

Maximize Yi for the ith stage

Subject to
- - -COM B i SEQ i TARG ET i

A A A+ ≤ (9)

The solution of the above problem can be obtained in two steps:

a) allocation of target area to each pipeline stage, and b)
optimizing yield of each stage for the target area allocated to that
stage. We propose a simple heuristic to allocate target area to the
individual stages based on the complexity of the stage logic. We
assume that the complexity of the logic is linearly dependent on
the number of logic gates. In that case the target area for the ith

stage can be determined by:

_ -
 (/) * -

C OM B i TAR GE T T i SE Q i
A A L L A≤ (10)

where, ATARGET is the pipeline target area, LT is total logic depth
and Li is logic depth of the ith stage.
To perform the second step, we use a gate-level transistor sizing

algorithm as proposed in [4] using Lagrangian Relaxation (LR)
based sub-gradient optimization. In [4], a solution for convex
gate-level sizing problem is proposed to minimize maximum
delay under an area constraint. We use the LR-based algorithm
for maximizing yield of a stage for a given target area. We
assume that for a considerable variation in mean of a stage delay
distribution (µi) with transistor sizing, the standard deviation of
stage delay (i) varies in the same direction. We have observed

this with Monte-Carlo simulation on several logic stages. Under
this assumption, the sizing algorithm for minimizing maximum
mean delay of a circuit can be used to maximize yield under
statistical delay distribution.

3.3 Global optimization of pipeline yield under area

constraint
In a conventional pipeline design flow, individual stages are
designed and optimized independently of others for a given

design objective before they are combined together to form a
pipeline. We propose incorporating a final design step on the
complete pipeline to improve yield while maintaining area (or
power). Under statistical design approach, a final optimization of
the complete pipeline design can improve the overall design yield
due to the following reason:

• Although individual stages are optimized for the best possible

yield under given stage area constraint, overall yield for the
complete pipeline may have opportunity for improvement

without area overhead. As mentioned before in section 2, we
can exploit the nature of “Max function” to achieve this.

The optimization problem for maximizing yield of a pipeline
under a given area budget can be formulated as:

Maximize
()T A RG ET T

T

T
Y

µφ
σ

−= /*Y is pipeline yield, µT is

mean, T is STD of pipeline delay */

Subject to)(
1

∑
=

N

i
iStageArea = ATARGET (Constant).

iii UxM ≤≤ , 1,...., .i N= /*xi is the size factor for a logic gate.

Mi and Ui are the min. and max. size factors of a gate*/

We have developed an algorithm to solve the above problem

efficiently. Table II presents this iso-area yield improvement
algorithm. The algorithm employs the principle of divide-and-
conquer, where we size one pair of stages at a time in such a way
that the combined yield for the pair of stages is improved while
the total design area is unchanged. Moreover, statistical timing
analysis (based on statistical static timing analysis or SSTA as
proposed in [9]) is performed over the complete pipeline,
although the sizing is done for only one stage. It helps to make the

algorithm computationally efficient, since we avoid application of
the sizing routine on all the stages simultaneously.
The principal idea is to optimally trade-off yield among the
pipeline stages under a constant area. We make use of area vs.
delay trends (Fig 3(a)) of each stage to determine which stage is
appropriate for improving yield (with increase in area) and which
stage is appropriate for compensating the area (with certain
decrease in yield) We refer this concept as area borrowing to

imply that overall yield of the pipeline can be improved by
selectively increasing area of some stages, while decreasing the
same amount of area from other stages.

First, we determine the position of each stage in their area vs.
delay curve, which essentially indicates how aggressively the
stage is optimized for yield. We rank the stages in the ascending

order of their slopes (
i

i

AR
D

∂= ∂
) of the area versus delay curves

(step 5, Table II). Next, we create N/2 pair of stages by

grouping each ith stage with the (N-i)th stage in the sorted list of
stages (step 6 - 8). For example, if a 5-stage pipeline has area vs.
delay slopes as R3 > R5 > R2 > R1 > R4, then according to the
above rule we choose (R3, R4) and (R5, R1) as two pair of stages.
Now for each pair, we enhance the yield of the stage with smaller

slope (Ri) at the expense of certain area increase (∆Ai) using

transistor sizing algorithm described in section 3.2 (step 11). The

area overhead (∆Ai) thus incurred is compensated by the other

element in the pair (with higher slope) at the expense of a

Table II: Algorithm for yield enhancement of a pipelined

circuit under an area constraint

Input: A pipelined circuit, statistical delay parameters for N
logic stages, target delay (Td), target area (ATARGET)
Output: Pipelined design with enhanced yield

1. for each stage i = 1 to N do

2. Perform statistical timing analysis
3. Compute the area vs. delay curve
4. end for

5. Sort the stages (Si) in ascending order of their Ri values

 /* select the pairs of stages for yield optimization */

6. for each stage i = 1 to N/2 do

7.
-

{ , }
i i N i

P S S= /* create stage pairs */

8. end for

9. for each stage pair Pi from i = 1 to N/2 do

10. Determine ∆Ai for the stage pair

11. Resize stage (Si) with lower Ri to improve yield at the

expense of ∆Ai

12. Resize stage (SN-i) with higher slope to compensate ∆Ai

13. end for

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

decrease in overall pipeline yield (step 12). However, due to the
difference in slopes between the two stages in a pair, the process
always increases the combined yield of the stage pairs. In the
process, pipeline stages move closer in area vs. delay curve i.e.
tend to be balanced with respect to their Ri values.

It is worth noting that for a particular stage pair ({Si, SN-i}),
optimal possible yield that can be obtained by the area borrowing

concept depends on the selection of exact area ∆Ai to trade

between them (step 10). We use a simple iterative solution to

obtain the best choice of ∆Ai for a stage pair by incrementally

changing ∆Ai at successive steps of a fixed step size.

The LR based sizing algorithm proposed in [4] has a
computational complexity of O(n2) where n is the number of logic
gates to size. For m pipeline stages each having n gates the
simultaneous sizing approach runs with a complexity of O(m2n2)
(with space complexity of O(mn)). The proposed algorithm
improves the complexity to O(mn2) (with space complexity of

O(n)). The complete pipeline design optimization algorithm
proposed here is significantly faster and takes much less storage
compared to the case where all the stages are sized
simultaneously.

4. Results
In this section, we present yield improvement results with the
proposed design methodology for two example pipelines. The

result of yield improvements obtained by applying the proposed
yield optimization algorithm to a 3-stage ALU-Decoder pipeline
is given in Fig. 3(b) (section 2.3).We first individually optimize
the stages for target delay of 175ps and 180ps. The stages are then
combined together to realize the complete pipeline resulting in the
yield of 70.5% (for 175ps) and 79% (for 180ps). Application of
the complete pipeline optimization algorithm improves the yield
by 15% (from 70.5%) for the target delay 175ps and 7.1% (from

79%) for the target delay of 180ps over the individually optimized
design.
We have also performed experiments with a 4-stage pipelined
circuit (designed with ISCAS85 benchmark circuits c499, c880,
c1908, c2670 as the stage logic, and edge-triggered D flip-flops as
the sequential elements). Initially, we assume that the stage delays
are independent Gaussian RV and use (4) to compute pipeline
design yield. Results of the proposed optimization are shown in
Table III and IV. Here 1st column represents the target delay for

the pipeline design and 2nd column presents the yield for a 4-stage
balanced pipeline where individual stages are already optimized
for equal yield (Y) under the given area budget. Column 3
presents yield obtained from our proposed methodology. The 4th

column shows the yield improvements. The results show up to
16% yield improvement (from the initial yield of 73%). The
scope of improvement gradually reduces with higher target yield.
We obtain 2% improvement in the case when the initial yield was

95% (Table III)

However, when correlation among the stage delays are
considered, for the same stage delays the overall pipeline yield
increases but by a lesser amount than the independent case. This
reduces the yield improvement by small amount. We obtain 12%
yield improvement from the initial yield of 78%. This yield
improvement gradually reduces to 1% for initial yield of 96.5%
(Table IV).

5. Conclusions
We have proposed a statistical approach for pipeline design under
parameter variations for maximizing yield with respect to a target
area. The proposed hierarchical approach can be easily extended
for other optimization objective like power. A statistical design
methodology is proposed using gate sizing algorithm to enhance
yield of individual stages. Experimental results on example
pipeline shows that significant improvement in yield can be
achieved with the proposed statistical approach of pipeline design

with constraint on die-area.

REFERENCES

[1] K. A. Bowman et al., “Impact of Die-to-Die and Within-Die

Parameter Fluctuations on the Maximum Clock Frequency

Distribution for Gigascale Integration”, JSSC’02, pp. 183-190.

[2] S. Choi et al., “Novel Sizing Algorithm for Yield Improvement

under Process Variation in Nanometer Technology”, DAC 2004, pp.

454-459.

[3] J. L. Hennessy et al., “Computer Architecture: A Quantitative

Approach”, Morgan Kaufmann, May 2002.

[4] C. Chen et al., “Fast and Exact Simultaneous Gate and Wire Sizing

by Lagrangian Relaxation”, IEEE TCAD’99, Vol. 18, No. 7, 1999,

pp. 1014-1025.

[5] S. Borkar et al., “Parameter Variations and Impact on Circuits and

Microarchitecture”, DAC 2003, pp. 338-342.

[6] H. Mahmoodi et al., “Estimation of Delay Variations Due to

Random-dopant Fluctuations in Nano-Scaled CMOS circuits”,

CICC 2004, pp. 17-20.

[7] S. G. Duvall, “Statistical circuit modeling and optimization”, IWSM,

June 2000, pp. 56-63.

[8] C. E. Clark, “The Greatest of a Finite Set of Random Variables,”

Operation Research, vol. 9, 1961, pp. 85-91.

[9] H. Chang et al., “Statistical timing analysis considering spatial

correlations using a single pert-like traversal”, ICCAD 2003, pp.

621-625.

[10] A. Datta et al., “Statistical Modeling of Pipeline Delay and Design

of Pipeline under Process variation to Enhance Yield in sub-100nm

Technology”, DATE 2005, pp. 926 - 931.

Table-III Yield improvement for independent stage delays

Td (ps) Ybalanced (%) Yoptimized (%) Yincrease (%)

420 73.13 85.10 16.37

430 74.61 86.12 15.43

440 80.54 90.75 12.66

450 83.70 92.59 10.62

460 84.98 93.45 9.96

470 86.72 92.89 7.15

480 88.28 94.23 6.6

490 89.89 94.39 5.01

500 93.22 95.69 2.65

510 95.14 97.09 2.05

Table-IV Yield improvement for correlated stage delays

Td (ps) Ybalanced (%) Yoptimized (%) Yincrease (%)

420 78.24 87.79 12.21

430 81.06 90.03 11.05

440 84.63 91.78 8.54

450 87.52 93.62 6.84

460 89.43 94.27 5.92

470 90.45 94.72 4.51

480 92.36 95.8 3.42

490 92.89 94.77 2.02

500 95.12 96.31 1.50

510 96.53 97.32 0.82

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

