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Abstract. Protection against software piracy and malicious modifica-
tion of software is proving to be a great challenge for resource-constrained
embedded systems. In this paper, we develop a non-cryptographic, key-
based, control flow obfuscation technique, which can be implemented by
computationally efficient means, and is capable of operating with min-
imal hardware support. The scheme is based on matching a series of
expected keys in sequence, similar to the unlocking process in a com-
bination lock, and provides high levels of resistance to static and dy-
namic analyses. It is capable of protecting embedded software against
both piracy as well as non-self-replicating malicious modifications. Sim-
ulation results on a set of MIPS assembly language programs show that
the technique is capable of providing high levels of security at nominal
computational overhead and about 10% code-size increase.

1 Introduction

The market share of embedded processors is ever-increasing, with more than 98%
of the total microprocessor market share (in terms of unit sold) already occu-
pied by them [I]. They can be found in a wide variety of electronic applications
- from low-end household items such as microwave ovens to high-end 3G/4G
cell phones and PDAs. Combined with this trend is the increase in computing
capabilities of embedded processors (with maximum operating frequencies of
up to 2 GHz in 2010) rivalling that of mainstream microprocessors [2], as they
are expected to run more computation-intensive software. An example is that
cutting-edge cellular devices are being increasingly used to surf the internet,
play graphics intensive games and perform “mobile commerce”, functionalities
that were traditionally associated with personal computers. Software develop-
ment for the mobile platform has also advanced immensely, with users routinely
downloading, installing and using both free and commercial software for their
devices.

However, this trend has increased the security concerns encompassing data
confidentiality and integrity, authentication, privacy, denial of service, nonrepu-
diation, and digital content protection [4], which were again relevant earlier only
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in the domain of commercial and personal computing. The threat is a two-edged
sword - on one hand, malicious software installed in an embedded system can
harm the user; on the other hand, reverse-engineering of software causes loss of
millions of dollars of intellectual property (IP) revenue to the software vendors.
Unfortunately, the traditional hardware or software security measures target-
ing personal computers are not directly applicable to embedded systems. The
computational demands of secure processing often overwhelm the computing
capabilities of embedded processors, and physically the portable embedded sys-
tems are often severely constrained by form factor, resulting in limited battery
capacities and memory [4].

In this work, we propose a novel technique of protecting embedded software
against piracy, reverse engineering and infection by obfuscating its control-flow.
The obfuscation is based on a key validation mechanism that internally generates
and compares a sequence of keys with their expected values loaded from mem-
ory. The keys are execution trace dependent, meaning thereby that for different
input parameters to the program, the sequence and values of keys involved in the
validation process are different. The normal functionality of the program is en-
abled only after a successful validation process, otherwise, the program produces
incorrect output. In addition, it provides additional authentication features by
which even if an adversary breaks the security scheme, the ownership of the
software can be proven by an authentication mechanism based on a digital wa-
termark. The proposed technique is not based on the weak “security through
obscurity” paradigm, where the algorithm used to obfuscate the functionality is
itself hidden from the adversary [5]. In our work we assume a threat scenario
where the adversary only has access to the program and tries to reverse-engineer
it to unveil the security scheme, and does not have access to the hardware system
which is successfully running such an obfuscated software.

The rest of the paper is organized as follows: In Section [2, we describe the
proposed key-based control flow obfuscation methodology with a complete illus-
trative example. In Section Bl we analyze the security of the scheme against a
possible attack model, and estimate the computational overhead of implement-
ing the proposed scheme. We describe the automated flow to implement the
methodology for a given MIPS assembly language program [36] in Section dl We
present the simulation results for a suite of MIPS programs in Section[5l Finally,
we draw conclusions and indicate future research directions in Section [6l

2 Methodology

2.1 Obfuscation Technique

The fundamental idea of the technique proposed in this work is to validate
the code during execution using a “challenge-response validation” protocol. The
correct execution of the program is achieved only after the correct application
of a set of input values, which constitute the validation key sequence. The steps
of the validation process are distributed throughout the program and operates
concurrently with the rest of the program, thus making it difficult to bypass
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Algorithm 1. Procedure Enumerate Paths Depth First
Enumerate all possible control-flow paths of given assembly language program
segment.

Inputs: Directed Acyclic Graph G corresponding to given assembly language program segment,
instr stack, current node, last node
Outputs: Set of edges (E) with corresponding number of paths on which each edge lies

1: if curr node # ® then
push on stack(instr stack, curr node)
if curr node == last node then
e.pathcount «— (e.pathcount 4+ 1) V edge e on current path
end if
Enumerate Paths Depth First(G,instr stack, curr node — left child, last instruction)
Enumerate Paths Depth First(G,instr stack, curr node — right child,last instruction)
pop from stack(instr stack)
else
return
. end if

e R IS I I

the defense mechanism [6]. The security is also increased by the fact that the
required validation key sequence depends on the input argument to the program.

The keys of the validation key sequence are fetched from pre-determined mem-
ory locations and compared with the expected “golden” values. If all the values
match, the program execution follows the normal control flow. However, if even
a single comparison fails, the program executes incorrect instructions which pro-
duces an incorrect result. The main challenge in implementing this technique is
the hiding of the instructions dedicated to the validation procedure in the pro-
gram. Although pre-determined values are fetched from pre-determined memory
locations, the key and memory location values are not hard-coded in the pro-
gram. Rather, they are derived during program execution, and different sets of
values are derived depending on the input argument. This makes static analysis
of the code and “program profiling” to discover the validation mechanism ex-
tremely challenging, because each and every validation step in the obfuscated
program must be identified and neutralized to ensure that the program operates
properly in every situation. The requirement of the predicates and variables in-
volved in obfuscation to be opaque, i.e. difficult to be deduced by static analysis
was pointed out in [9].

The obfuscation algorithm proceeds by finding the feasible control-flow paths
in the program (or a part of it) and their dependence on the input values, and
then making modifications at optimal locations in the program, such that for a
given code-size and run-time overhead, the modifications would have maximum
overall effect. Algorithm{Il shows the pseudo-code for the algorithm to enumer-
ate the paths of the program using a Depth-first Search (DFS). The procedure
assumes that the given MIPS program has been modeled as a “Directed Acyclic
Graph” (DAG), with the edges forming loops removed. Each instruction of the
program forms a node of the graph, and each node has one child (the non-branch
instructions) or two children (the non-loop branch instructions). For each node,
one among the children is always the next instruction. Note that a return from
a procedure call is not treated as being part of a loop, because the “directed
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Algorithm 2. Procedure Find Optimal Modifications
Find the optimal modification locations for a set of given control-flow paths and
given number of modifications.

Inputs: Set of edges E, modification pool M, required number of modifications (M), minimum
modification radius (7ym0d)
Outputs: List of modification locations in the program

. Sort E based on number of paths on which each edge e € E lies (i.e. e.pathcount)
num mods «— 0
for all edge e € E do
e.modified «— FALSE
end for
/*Iterate over the ordered edges and make modifications based on r,,,q constraint®/
for i = 1 to |E| and num mods < M do
Set E, = {e; € E: |e; —ej| < rmoa} /* |ei —ej] stands for the physical separation of the two
edges */
9:  if e.modified == FALSE Ve € E,. then
10: Choose previously unchosen m € M
11: Insert m on e;
12: ej.modified <— TRUE Ve; € E,.
13: num mods <— num mods + 1 /*Update number of modifications*/
14: end if
15: end for

acyclic” nature of the graph can be still maintained. In addition to the regular
DFS, the number of paths on which an edge lies is tracked. This information is
utilized in determining optimal locations to perform modifications in the pro-
gram, as described next.

Algorithm{2 shows the procedure to find the optimal locations to make M
modifications for a given program (or a part of it). At first, the edges of the graph
are ranked in descending order in terms of the number of paths on which the
edges lie. Then, M modifications chosen greedily from a pool of modifications
are inserted on the top-ranked edges, with the constraint that the modified
edges are situated at least a pre-defined “modification radius” 7,,,q distance
away from each other. If any edge connects two vertices which do not represent
consecutive instructions in the program, jump instructions are used to connect
the modification code block to the two vertices on the edge. The following points
should be noted about this algorithm:

— Choosing the top-ranked edges ensures maximum effect of a single modifi-
cation on multiple paths, while the r,,,q constraint ensures that the modifi-
cations are not inserted too close to each other.

— The constraint 7,,,q determines the average number of modifications per

path:
|PP|

DM
Mgy = =} 1

av P (1)
where |P| denotes the total number of paths in the part of the program

segment being processed, M; denotes the number of modifications lying on
the i-th path, and 1 < M,, < M. An increase in the value of M, can
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be thought of to signify an increase in the security of the system, because
more successful validations are required on average per path to make the
program run successfully. Another metric that is determined by 7,4 is the
average distance between modifications. Let E,,,q be the list of modified
edges, ordered by their positions in the program, and M be the total number
of modifications inserted. Then the average distance between modifications
is given (for M > 1) by:

M-1
Z |€¢+1 - €¢|
i=1

Dyy = 2
M_1 (2)

for e; € Epod, With 7m0 < Dy < M]\il, where N is the number of in-
structions in the program. If r,,,q is small, say rpy0q = 1, the minimum
value possible, the top M ranked edges would be chosen which would in-
crease the value of M,,. However, on the flip-side, the value of D,, might
decrease, meaning that the modifications would be placed too close to each
other which puts them at the risk of being more identifiable to an adversary.
Also, a higher value of M,, also implies an increase in the average execution
time of the obfuscated program with respect to the original program. Hence,
the parameter r,,,q provides a degree of freedom to balance between the
quantitative metrics Mg, and D,,, and the performance of the program.
This algorithm inserts the modifications at “preferred pseudo-random” lo-
cations, with preference being given to locations that would affect the max-
imum possible number of paths, while being “pseudo-random” in the sense
that the modification locations are distributed throughout the program,
through the effect of 7,,04-

If a modification is inserted between two instructions which are part of a loop,
then the key-validation step would be repeated as many times as the loop
repeated, even if the validation is successful. To avoid this, the modification
should be such that any successful validation is “remembered”, so that the
next time the loop is executed, the validation mechanism is not exercised.
This can be implemented easily by having a “flag” register and local jumps
in the modification. We have elucidated this point with an example in the
next sub-section.

To increase the level of security, the operations dedicated to deriving and
comparing the keys of a sequence do not appear in the order in which the
keys are compared.

Next we give a complete example program to elucidate the two algorithms de-
scribed above.

2.2 Obfuscation Example

Fig. [[(a) shows an example MIPS assembly language program to calculate and
display the value of the n-th Fibonacci number for a given non-negative integer
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Inserted Code
“““ Modification locations LS5 18

h f Paths ,
— Continuous control-flow M o2z s |||mu

"""" * Control-flow with jum)|
. “Ddlﬁcallenﬂg @ @ loop1: addi $t4 4

Original MIPS Program A - T -2 addi $3 -1
(pathe #1.52,43) bne $t3 $t4 loop1

data ] bit $v0 Szero emror_display(2 1] 4
| result: asciiz "n Result = " - ® \\ .;“sfs' s?:? u;:u
| error_msg: asciiz "in ERROR: Negative argumentin® .\ Iw $0 0(5t5)

Aext "
“ move $t3 $t5
Aol maln ' | add 514 513 53
#begin_text bit $v0 Szero done % | Iw $t2 4($t5)
1. main: Iw $v0 0x10000030 # read argument in $v0 from 0x10000030 %, | hne 310 982 foop
. bit $v0 $zero error_display # conditional branch instruction

2
3. 1i$11 2 # to compare with $v0

4. bit $v0 5t1 done & conditional branch instruction
| 5. move a0 $v0 # copy value in $a0

6. lisw00

7. lisvo1

B. liSal 1 #to compare with $a0

9. loop: add $t1 $t0 $v0

10. move St $v0

11. move $v0 $t1

12. addi $a0 -1

13. bgt$al $alloop # i local branch

14, done: move $a1 $v0 ¥ make a copy of the result in $v0

Modification #2
** (paths #2,23)

| 15. Ia Sa0 result Ir:-u“?:r:sgi =

|
16. Sv0 4 @ Ilimgﬂo
e | loop1: addi reg2 4
18. move $al $a1 # copy back result to Sa0 OO & MAKH Teg
19. li$vo1 addi reg -1
20. syscall bne reg1 reg2 loop1
21. la Sal eol Ii reg0 0x1000000

| add reg0 regl reg2

|22, isvo 4 @) en

| 23, syscall . Iw reg3 O{reg)

| 24. jend # unconditional branch instruction i move regl regl

| 25. error_display: la $a0 error_msg add reg2 reg reg1

Iw reg4 4(reg0)

26. lisvo4
27. syscall bne reg3 regd loop
28. end: li $v0 17
29, ::s:au = Modification code
#end_text “Non-loop” Branches

Loop” Branches T

(paths #1,#2,83)
{a) Original MIPS Program (b) Results of path analysis (M=3, rm..=5)

Fig. 1. Example of application of the proposed algorithm on a MIPS program to cal-
culate the value of the n-th Fibonacci number for a given non-negative integer n

n. The main part of the program to be modified occurs between the markers
#begin text and #end text, and the instructions between these two markers
have been numbered for ease of understanding. The DAG representation of the
program has been shown in Fig. [[(b). The feasible control paths of the program
are then enumerated by analyzing the DAG using Algorithm{Il The feasible
paths for this program (paths #1, #2 and #3) are shown in Fig. [[[b), where
each instruction has been represented by its serial number. Note that the differ-
ent paths are followed depending on the value of the input argument n to the
program - path-1 if n < 0, path-2 if 0 < n < 2 and path-3 if n > 2. When
Algorithm{2 is applied to find the optimal modification locations for M = 3
modifications and 7,,,q = b, the modifications are placed between instructions 1
and 2 (modification #1), between 14 and 15 (modification #2) and between 28
and 29 (modification #3). Modification #1 and #3 affect all three paths, while
modification #2 affects only paths 2 and 3. The average number of modifications
is per path is thus Mg, = (3+3+42)/3 = 2.67, which is less than the ideal value
of My, = M = 3.00. The average distance between modifications D, = 9.00,
while the ideal value is ];' = 229 = 14.50.

Note that Algorithm [2limplies that the first modification would always be in-
serted on one of the edges connecting the “root node” to the node corresponding
to the first branch instruction in the program. This feature might make the first
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modification identifiable to an adversary performing static analysis. This issue
is handled by modifying the algorithm so that an exception is made about the
position of the first modification, so that no modification appears between the
“root” node and the first branch node.

An example modification has also been shown which is derived from the cor-
responding modification pool after binding the generic register names reg0, regl
etc. to actual resisters t5, t3, etc. As mentioned before, the register binding keeps
the original functionality of the program functionally correct by a liveness anal-
ysis. In the given case, registers t0 and ¢2 collect the input and golden values
of the key from memory locations 0x10000040 and 0x10000044 respectively, and
normal operation is allowed only if the fetched values match. In this particular
case, incorrect operation is due to the fact that the register t0 contains an in-
correct value (it should contain zero when the label loop is reached). In case no
registers are found free to be used bound to generic registers, register spilling
and restoration has to be applied.

2.3 Implementation

To make the obfuscated software operate correctly, the user must buy the soft-
ware license in the form of a small support software from the software vendor
to manage the key installation in memory. The user has to run this support
software to install the keys in the correct memory location, and then install the
main software. The security of the scheme can be increased by changing the key
sequence for each instance of the licensed software, so that the support software
would be bound with the particular copy of the original software which it was
designed to activate.

2.4 Integration with Hardware-Assisted Approaches

The proposed software obfuscation technique can co-exist with hardware-assisted
security solutions, such as Trusted Platform Module (TPM) [I7/18], thus adding
an extra level of protection. The security features provided in such platforms can
be useful in situations where the adversary has physical access to the hardware
successfully running the program. In addition to the proposed software obfusca-
tion technique, if the memory contents are encrypted (e.g. in [15]) or memory
addresses are re-mapped to hide the control flow (e.g. in [27]), the adversary
would face an additional challenge of first breaking the hardware-assisted se-
curity scheme, and then de-obfuscating every obfuscated software individually.

3 Obfuscation Efficiency and Overheads

In this section we present theoretical analyses to obtain a quantitative estimate
of the achievable security and overhead incurred by the proposed scheme.
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3.1 Obfuscation Efficiency

We borrow the following metrics which have been previously proposed to esti-
mate the success of a software obfuscation scheme [9]:

— Potency: the complexity in comprehending the obfuscated program com-
pared to the unobfuscated one.

— Resilience: difficulty faced by an automatic de-obfuscator in breaking the
obfuscation.

— Stealth: how well the obfuscated code blends in with the rest of the program,
and

— Cost: how much computational overhead it adds to the obfuscated program.

A potent software obfuscation technique should provide high levels of potency,
resilience and stealth, while incurring minimal cost. In particular, it should pro-
vide sufficient protection against both dynamic (i.e. run-time) and static pro-
gram analyses. The technique automatically provides high levels of protection
against dynamic analysis because of the fact that the particulars of the basic
“challenge-response” mechanism of fetching the key from memory, comparing it
with the golden key, and modifying the control-flow based on the result of the
comparison, vary depending on the input arguments of the program. Because
the input argument-space of most practical programs is larger beyond complete
enumeration, hence, breaking the obfuscation scheme simply by observing the ex-
ecution of the obfuscated program is practically infeasible. Hence, we concentrate
on the protection provided by the proposed key-based obfuscation methodology
against static code analysis efforts of an adversary.

Consider an assembly language program containing N instructions, to which
n instructions are added to modify the control flow by the technique described
above, as a result of which the code size increases to (N + n). Let there be L
“load” instructions in the original program, to which ! “key load” instructions
are added during modifications to increase the number of load instructions to
(L +1). Note that as pointed out earlier, these load instructions need not occur
in the same order as the key comparison sequence. Similarly, let there be C
“comparison-based branch” instructions in the original program to which ¢ are
added to bring the total number of branch instructions to (C' + ¢). To identify
the modifications that have been made to the original program based on random
choice, an adversary must perform the following steps:

— Identify the n instructions dedicated in modifying the original program, out

of a total (IV +n) instructions in the obfuscated program. This is one out of
N+n
N possibilities.

— Identify the I “load” instructions dedicated to the obfuscation scheme out of
the total (L +1) “load” instructions, and from them determine the correct
order in which the keys are collected from memory and compared to modify
the control flow. Note that the adversary does not know a-priori the number
of key comparisons for a given feasible control-flow path of a given program.
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Let Mg, be the average number of modifications performed among all the
feasible control-flow paths of the given program. Then, to break the scheme,
el L+
the adversary has to make exactly one out of Z ( ; ) x i!| choices
i=1
to determine the correct number and sequence of keys to be applied.

— Identify the ¢ “comparison-based branch instructions” dedicated in control-
flow modification, from a total of (C'+ ¢) such instructions in the obfuscated
program.

— Identify the (n — [ — ¢) dataflow operations dedicated to obfuscate the code,
from among the total (N +n — L —C —1 —¢) in the obfuscated code.

Combining the three above factors, we propose the following quantitative metric
to estimate the effectiveness of the proposed key-based obfuscation scheme:

1

(M”]<L+l> ) (C+c> (N+n—L—C—l—c>
Z . x il % X
. i c n—Il—c
i=1

3)
Lower values of this metric implies higher levels of potency, resilience and stealth.
To get an idea of the numerical order of this metric, consider the example shown
in Fig. [l and the portion of the code between the two markers #begin text and
#end text. Assuming the length of all modifications to be similar to the one
shown, we have the values [ My, | = 3, Tmod = 5, N =29, n =3x13 =39, C = 3,
c=3x2=6,L=1and! =3 x 2. This gives the value M,y ~ 9.63 x 1029,
In real-life applications, the value of this metric would be much smaller because
of larger values of N and L, which in turn would allow larger values of n and I.

Mobf,random =

3.2 Computational Overhead of the Obfuscation Technique

Time Complexity. The time complexity of the path enumeration step is essen-
tially the time complexity of the dept-first traversal, which is O (|V| + |E|), where
|V] and |E| are the number of vertices and edges respectively in the graph [32].
However, note that in our particular case, N — 1 < |E| < 2N, where N = |V|
is the number of instructions in the block of the program to be obfuscated. The
lower limit occurs when there is no non-loop branch instructions in the program,
while the upper limit is because of the fact that no node in the graph has more
than two children. However, note that an upper limit of 2V is overly pessimistic
for real programs, because (approximately) only one in every seven instructions
in real-life programs are branch instructions. Hence, the time complexity of the
depth-first traversal step is O(N). For the program modification step, the time
complexity is O(|E|), which because of the argument presented just now is O(N).
The time complexity of ranking the instructions based on the number of paths
on which they lie is O(N log N), assuming an efficient sorting algorithms such
as “Heapsort”. Hence, the overall time-complexity of the obfuscation procedure
is O(N log N).
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To estimate the value of the average number of modifications made per path
(Mgy), it is essential to find the number of modifications made on every path
individually, as well as the total number of paths. The total number of paths
can be found during the first depth-first search. However, finding the number of

7|
modifications made individually on each path will require O Z |pi| | steps,
i=1
where |P| stands for the total number of paths, and |p;| is the length of the i-th
path in the set of paths P.

Space Complexity. The space complexity of the entire procedure is O(N),
the space required to store the information about the instructions constituting
the program. If the program to be processed is of considerable size, it should be
partitioned into segments of manageable sizes; each segment can be obfuscated
independently and then the obfuscated segments are to be integrated to get the
obfuscated program in its entirety.

4 Automation of the Obfuscation Technique

The program obfuscation methodology described in Section [2] was implemented
through an automated flow, as shown in Fig. Bl The top-level tcsh script sob-
fus accepts as input arguments the un-obfuscated MIPS program segment in a
single file (let it be “file.mips”), the number of modifications (M) to be made
and the modification radius (rmoq). M is estimated a-priori from the size of the
modification code blocks in the modification pool, the size of the program, and
the maximum code size overhead acceptable. sobfus invokes the TCL script
format code which formats the input code by removing all comments and
blank lines and replacing all labels for branch instructions in the program by

/" Input: Original MIPS program

(file.mips), )

# modifications (M), |

modification radius (fwd) |
sobfus

( 1. Formatted code (<file>_formatted.mips) é —_17

2. Label indices (label_indices_arraytel) [

I 1. Identify all ibl
control-flow paths i
2. Identify optimal i
modification positions
1.Paths (paths.ty (1 7 Modification Pool
2. Modification locations (mods. txt) (mod_pool.txt)
["1. Bind register labels o | I

actual registers
2. Bind numeric labels to
_ — P « modity_code
1. Modified code (<file>_modified mips) 2. Generate modified code
2. Obfuscation metric (Moo )
4 (Da)

3. Average Modifications perpath (M,,) | T~~~ "7
g modifi

Fig. 2. Automation of the proposed obfuscation technique
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Table 1. Functionality of the MIPS assembly programs used to evaluate the proposed
obfuscation technique. The test programs cover a variety of representative applications
from embedded domain.

Program Functionality

TokenQuest.mips One player adventure game

hanoi.mips Recursive solution of the “Tower of Hanoi” problem

MD5.mips MD5 hashing of a given ASCII text file

connect4.mips  Two player “Four in a Line” game

DES.mips Digital Encryption Standard (DES) encrypter/decypter (for ASCII text files)
sudoku.mips Sudoku puzzle

ID3Ediror.mips Reading and editing of ID3 tag information in MP3 music files
string.mips MIPS implementation of the functions of the C standard header “string.h”
cipher.txt Various cipher techniques for ASCII text

decoder.mips MP3 music format decoder

the corresponding destination line numbers. It produces a formatted version of
the program in the file “file formatted.mips”, and a hash of the program labels
and the corresponding line numbers in the file “label indices array.tcl”. sobfus
then calls the C program mobjfus which enumerates all the possible control-flow
paths in the program segment using Algorithm{Il and finds the optimal mod-
ification locations using Algorithm{2l It reports the enumerated paths in the
file “paths.txt” and the modification locations in the file “mods.txt”. sobfus
then invokes the TCL script modify code which finally produces the obfus-
cated program in the file “file obfuscated.mips” by using the modification code
blocks provided in the file “mod pool.txt”, and binds the register mnemonics to
registers available at a given point in the program (as described in Section 2]
and elucidated in Section 22)). It also produces an estimate of the obfuscation
metric Mop; according to eqn. B and values for the metrics M, and Dyg,.

To extend the proposed obfuscation technique to binary executables, one
would need to disassemble the equivalent assembly language program from a
given binary, substitute all absolute addresses by symbolic addresses, apply the
proposed obfuscation technique, and then again convert it back to the binary
form. Note that the address substitution is essential because the insertion of
modification code fragments shifts the relative positions of the instructions. Dis-
assembly and de-compilation of binary code to assembly language code is not
very difficult, and free tools are available online [33] to serve the purpose.

5 Results

The proposed technique was applied on a suite of MIPS programs varying in
size from 109 to 21024 instructions. The test programs represent components of
various embedded applications. The functionality of the programs are listed in
Table[Il The functionality of the original and the obfuscated versions of all the
programs were verified using the SPIM simulator [34]. The program obfuscation
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Fig. 3. Variation of (a) average modification per path (Ma.) and (b) the average dis-
tance between modifications (Dgy) vs. the modification radius (rmed), in the program
connect4.mips, for M = 3 modifications

methodology described in Section Ml was implemented and the programs were
simulated on a Linux workstation with 2GB of main memory and a 2GHz quad-
core processor.

We investigated the effect of variation of the modification radius (rmeq) on
the average modifications per path (M,,) and the average distance between
modifications (D,,) for the N = 270 instruction program connect.mips. The
number of modifications (M) was set at 3, and 7,,,4 was varied between 1 and
80. Fig. [3 shows the plots of M, and Dg, VvS. rmeq. The values for M,, were
normalized with respect to its value at rp,,q = 1 (the minimum possible value
of 7mod). The trends are as expected, with M,, decreasing with 7,,,q and Dy,
increasing with r,,,4. Note that the metrics M, and D,,, satisfy the constraints
1< My, <M and rmoed < Dgy < M]\il, as stated in Section 211

Table 2l shows the effects of applying the proposed application technique on
the MIPS program suite, at a modification radius (rmoq = 50), with a 10% target
code-size overhead. For the largest program decoder.mips, only 1000 paths were
considered to keep the memory requirement manageable, and 7,,,4 was set to
500. As is evident from the obtained My values, the proposed technique can
provide high levels of protection at a nominal code-size overhead of 10%. Note
that in larger programs and in programs with higher number of “load” and
“branch” instructions, the effectiveness of the technique increases.

Table B shows the code-size overhead of the obfuscated program (with respect
to the original program), the CPU time and average increase in execution cycles
to implement algorithms [l and 2l The run-time overheads were not calculated
by direct functional simulations by SPIM, but by indirect analysis of the original
and modified programs. The average increase in execution time was estimated by
calculating the average increase in execution cycles per modification, and then
multiplying the quantity with the average number of modifications per path.
The CPU time has a strong correlation to the number of paths in the program,
and a weaker correlation to the program size. These trends are consistent with
the analysis of Section
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Table 2. Program obfuscation efficiency for a targeted 10% code-size overhead at a
modification radius rmoq = 50

Program Parameters’ Obfuscation Efficiency
Program N C L [Pl Mn ¢l Mopbf Ma Dao
TokenQuest.mips 109 19 14 11 2 18 3 3 1.09e-20 1.55 95.0
hanoi.mips 132 20 40 169 2 16 3 3 1.43e-19 191 67.0
MD5.mips 250 41 35 114 4 26 5 5 6.33e-33 3.67 65.33
connect4d.mips 270 72 37 4146 4 26 5 5 1.30e-33 3.47  89.33
DES.mips 372 43 64 5241 6 34 7 9 1.54e-40 531  68.00
sudoku.mips 436 110 43 111113 8 41 9 11 2.66e-49 6.76  58.29

ID3Editor.mips 878 160 134 98724 12 89 16 19 1.71e-106 5.66  79.45
string.mips 876 156 224 111075 12 89 16 19 4.42¢-103 10.90  60.55
cipher.mips 1956 231 218 150129 27 188 35 43 1.65¢-222 26.23  75.12

decoder.mipst 21024 174 231 1000 27 188 35 43 <107%%° 13.50 502.00%
fThe meaning and significance of these parameters are as described in Section

B

£Only 1000 paths were enumerated, and 7moq was set to 500.

Table 3. Overheads for the obfuscation technique (with parameters of Table [2])

Overheads

Program Code-size (%) CPU time (s) Average Increase in Execution Cycles
TokenQuest.mips 18.85 0.10 17.83
hanoi.mips 12.12 0.40 20.06
MD5.mips 10.40 0.90 31.20
connect4.mips 9.63 1.00 29.50
DES.mips 9.14 2.00 41.60
sudoku.mips 9.40 66.00 48.17
ID3Editor.mips 10.14 112.00 54.71
string.mips 10.16 217.00 105.37
cipher.txt 10.61 1474.00 241.90
decoder.mips 0.89% 1840.00 124.50

6 Conclusions

Security of embedded software has emerged as a major challenge because of
their increasing vulnerability to piracy and malicious modifications. Severe con-
straints on hardware and energy resources of embedded devices often limit the
applicability of complex hardware and software protection approaches. We have
presented a low-overhead “execution trace dependent control-flow obfuscation”
technique, which requires the application of an input-dependent set of validation
keys to enable a software module to function properly. The key verification mech-
anism is implemented by distributing the verification code throughout the pro-
gram to balance the code overhead and proximity of the modifications. We have
theoretically analyzed the level of security and the associated computational
overhead. Application of the algorithm on a suite of MIPS programs resulted in
high levels of security at nominal code size and modest computational
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overhead. The technique can be easily automated and applied to arbitrarily
large programs by appropriate program partitioning. Future work would involve
implementation of a working prototype (including proper hardware support) of
the proposed obfuscation scheme.
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