2010 23rd International Conference on VLSI Design

RTL Hardware IP Protection Using Key-Based Control and Data Flow
Obfuscation

Rajat Subhra Chakraborty and Swarup Bhunia
Dept. of EECS, Case Western Reserve University
Cleveland, OH-44106, USA
{rsc22, skb21} @case.edu

Abstract

Recent trends of hardware intellectual property (IP)
piracy and reverse engineering pose major business and se-
curity concerns to an IP-based system-on-chip (SoC) de-
sign flow. In this paper, we propose a Register Transfer
Level (RTL) hardware IP protection technique based on
low-overhead key-based obfuscation of control and data
flow. The basic idea is to transform the RTL core into con-
trol and data flow graph (CDFG) and then integrate a well-
obfuscated finite state machine (FSM) of special structure,
referred as “Mode-Control FSM”, into the CDFG in a man-
ner that normal functional behavior is enabled only after
application of a specific input sequence. We provide formal
analysis of the effectiveness of the proposed approach and
present a simple metric to quantify the level of obfuscation.
We also present an integrated design flow that implements
the proposed obfuscation at low computational overhead.
Simulation results for two open-source IP cores show that
high levels of security is achievable at nominal area and
power overheads under delay constraint.

1. Introduction

Hardware intellectual property (IP) cores form an inte-
gral part of modern multi-million gate SoC designs. How-
ever, recent trends in [P-piracy and reverse-engineering ef-
forts have raised serious concerns in the IP vendor com-
munity [1,2]. A major fraction of commercial IPs come
in the form of synthesizable RTL descriptions in Hardware
Description Languages (HDLs), due to their better portabil-
ity. Protection of these soft IPs from piracy and reverse-
engineering, is extremely challenging due to their better
clarity and intelligibility.

Hardware IP protection has been investigated earlier
in diverse contexts. Previous work on this topic can be
broadly classified into two main categories: (1) Authentica-

1063-9667/10 $26.00 © 2010 IEEE
DOI 10.1109/VLSI.Design.2010.54

405

tion based and (2) Obfuscation based. Efficient insertion of
hard-to-remove “digital watermark™ or authentication sig-
nature in IPs has been widely investigated [1]. The water-
mark is usually one or more special input-output response
pairs, which do not arise during the normal course of opera-
tion. The watermarking approaches, however, are effective
as passive defence measures, which only help to prove the
ownership of the IP in case of litigation without preventing
the piracy from happening in the first place.

In obfuscation based IP protection, the IP vendor usu-
ally affects the human readability of the HDL code [6,9],
or relies on cryptographic techniques to encrypt the source
code [7], such that the resultant code becomes significantly
more difficult to reverse-engineer. However, the above tech-
niques do not modify the functionality of an IP core and
thus often cannot prevent it from being stolen by a hacker
and used as a “black-box” RTL module. In [7,8], the HDL
source code is encrypted and the IP vendor provides the
key to de-crypt the code to only its legitimate customers.
However, each of the above techniques forces the use of a
particular design platform, a situation that may not be ac-
ceptable to many SoC designers who seek the flexibility of
multiple tools from diverse vendors in the design flow. In
[2], we proposed an approach to obfuscate the functional-
ity of gate-level firm IP cores through modification of the
state transition graph (STG) that requires a specific input
sequence to enable normal functional behavior. Such an
obfuscation approach provides an active defence to IP in-
fringement. However, extension of this approach to RTL
involves major challenges, primarily due to the difficulty of
obfuscating the STG modification in a highly comprehensi-
ble RTL code. In [3], we proposed a decompilation-based
RTL obfuscation approach, which requires converting the
RTL design into gate-level netlist. However, decompilation
can remove some preferred RTL constructs and hence can
be undesirable at some cases. Software obfuscation to pre-
vent reverse-engineering has also been studied extensively
[4,5]. However, software approaches cannot be directly ap-
plicable to hardware IPs since software obfuscation is per-

IEEE
computer
psouety

Obfuscated Mode
(Incorrect function)

Normal Mode
(Correct function)

-
’
G
4

S "/
tart l

7
|
|
|
|
|

Enabling Key: {P0O, P1, P2}

e -

Modified State Transition Function

L e

(a

(b)

Modification Signal Pool
AT1, Tz, .. Tk)

Al 11 1]

[[1]

O Modified
CDFG Node

Mode-control FSM
State Element

[original 171 Host Registers

State Element

Figure 1. The general functional obfuscation scheme by state transition function modification [2]: a)
modified state transition function; and b) change in internal node structure using modification cells.

formed with very different constraints (e.g. code size, run
time as opposed to power and performance in hardware) and
it typically cannot prevent black-box usage of a code.

In this paper, we propose a low-overhead methodology
for implementing key-based obfuscation in RTL IP core. It
does not require converting RTL into gate level netlist. The
main idea is to efficiently integrate a Mode-Control FSM
into the design through judicious modification of control
and data flow structures, such that the design works in two
modes: 1) obfuscated mode and 2) normal mode. The de-
sign produces undesired output values in obfuscated mode,
while normal functional behavior is enabled when it moves
to normal mode on application of a pre-defined input se-
quence. The Mode-Control FSM is integrated inside the
CDEFG of the IP in a way that makes it extremely hard to
isolate from the original IP. The FSM is realized in the RTL
by expanding a judiciously selected set of registers, which
we refer to as host registers and modifying their assignment
conditions and values. Once the FSM is integrated, both
control and data flow statements are conditioned based on
the mode control signals derived from this FSM.

We derive a metric that estimates the level of obfuscation
in terms of the difficulty of reverse engineering the obfus-
cated RTL. Effectiveness of the proposed approach is ver-
ified with simulation results for two open-source IP cores.
The results show that the proposed approach is computa-
tionally efficient and provides high level of obfuscation at
low design overhead, while preserving the portability of
the RTL code. Although we consider Verilog RTL in our
analysis and simulation, the technique is applicable to other
HDLs and to both SoC and FPGA platforms.

2 Methodology

The general scheme of functional obfuscation [2] is
shown in Fig. 1. Here, a mode-control FSM is inserted

406

into a design that forces it to operate in two distinct modes:
(a) the obfuscated mode when the circuit functionality is
drastically different from its prescribed functionality, and
(b) the normal mode when the circuit operates in its normal
mode. On power-up, the circuit is initialized in the obfus-
cated mode, and on the application of a particular sequence
at the primary input, which we refer to as the initializa-
tion key sequence, the mode-control FSM goes through a
sequence of state transitions that brings the system to the
normal mode. This is shown in Fig. 1(a), where the appli-
cation of the sequence PO — P1 — P2 takes the circuit to
the normal mode. The circuit is modified at selected con-
trol and data flow nodes using modification signals which
are formed as Boolean functions of the mode-control FSM
states. These modification signals affect the logic values at
select nodes in the obfuscated mode, preventing the circuit
to perform its normal functionality. The mode-control FSM
performs some dummy state transitions in both the obfus-
cated mode and the normal mode. These transitions are in-
serted so that the FSM is not “stuck-at” at a particular state
in either mode, thus making it difficult for an adversary to
identify the state elements implementing this FSM through
structural analysis.

always @(posedge clk or posedge rst)

begin
if (rst) myreg <= 2'b0;
else if (!ctrl)
case(select)
2'b00: myreg <= 2'b01;
2'b01: myreg <= 2'b00;
2'b10: myreg <= 2'b11; case
2'b11: myreg <= 2'b10;
endcase oo S % %05,
else myreg <= a; ’_L‘ Kl ~
myreg myreg myreg myreg
end =2b01| [=2b00| [:=2b11] [:=2'b10

Figure 2. Transformation of a block of RTL
code into CDFG.

The security against piracy and reverse engineering
stems from the following features: (a) it is not possible to
make the hardware IP functional until the initialization key
sequence, which also acts as the proof of ownership of the
IP, is known and (b) it is extremely difficult to derive the
key through functional simulations as described in [2]. The
main challenge, however, is to hide the mode-control FSM
and design modifications in the RTL. The proposed obfus-
cation scheme comprises of four major steps described in
the rest of the section.

2.1 Parsing the RTL and building CDFG

In this step, the given RTL is parsed and concurrent
blocks of RTL code are transformed into a CDFG data
structure. Fig. 2 shows the transformation of an “always
@()” block of a Verilog code to its corresponding CDFG.
Next, small CDFGs are merged (whenever possible) to
build larger combined CDFGs. For example, all CDFGs
corresponding to non-blocking assignments to clocked reg-
isters can be combined together without any change of the
functionality. This procedure creates larger CDFGs with
substantially more number of nodes than the constituent
CDFGs, which helps to obfuscate the hosted mode-control
FSM better.

2.2 “Hosting” the mode-control FSM

Instead of having a stand-alone mode-control FSM as
in [2], the state elements of the mode-control FSM can be
hosted in existing registers in the design to increase the level
of obfuscation. This way, the FSM becomes an integral part
of the design, instead of controlling the circuit as a struc-
turally isolated element. An example is shown in Fig. 3,
where the 8-bit register reg/, referred as the “host register”,
has been expanded to 12-bits to host the mode-control FSM
in its left 4-bits. When these 4-bits are set at values 4’h1 or
4'h2, the circuit is in its normal mode, while the circuit is
in its obfuscated mode when they are at 4’ha or 4'hb. Note
that extra RTL statements have been added to make the cir-
cuit functionally equivalent in the normal mode. The ob-
fuscation can be improved by distributing the mode-control
FSM state elements in a non-contiguous manner inside one
or more registers.

2.3 Modifying CDFG branches

After the FSM has been hosted in a set of selected host
registers, several CDFG nodes are modified using the con-
trol signals generated from this FSM. The nodes with large
fanout cones are preferentially selected for modification,
since this ensures maximum change in functional behav-
ior at minimal design overhead. Three example modifica-
tions of the CDFGs and the corresponding RTL statements

407

always @(posedge clk or negedge rst) begin
if (Irst) reg1 <= 12'b0;
else begin
if (reg1==12'h212 | reg1==12'n112)

always @(posedge clk or negedge rst):
begin
if (rst) reg1 <= 8'b0;

else begin & in1==4'h1) reg1 <= 12'h11a;

if (reg1==8'h12 & in1==4'h1) else if ((reg1==12"ha0fa | reg1==12"hb0fa)
reg1 <= 8'h1a; & in1==4'h2) reg1 <= 12'hb11;

else if (reg1==8'hcc & in1==4'h2) else if ((reg1==12'h1cc | reg1==12'h2cc)
reg1 <= 8'hbb; & in1==4'h2) reg1 <= 12'h2bb;

else if (reg1==8'h2f & in2==4'ha) else if ((reg1==12'"h22f | reg1==12"h122f)

reg1 <= 8'hde;
else reg1 <= 8'hef;
end
end

& in2==4'ha) reg1 <= 2'h2de;
else if ((reg1==12'hb22 | reg1==12'ha22)
& in2==4hf) reg1 <= 12'hb66;
else if (*in1) reg1 <= 12'h1ef;
else reg1 <= 12'h2ef;
end
end

Figure 3. Example of a register hosting part
of the mode-control FSM.

are shown in Fig. 4. The registers regl, reg2 and reg3 are
the host registers. Three “case()”, “if()” and “assign” state-
ments in Fig. 4(a) are modified by the mode-control signals
condl, cond2 and cond3, respectively. These signals evalu-
ate to logic-1 only in the obfuscation mode because the con-
ditions reg1=20"habcde, reg2=12"haaa and reg3=16"hblac
correspond to states which are only reachable in the obfiss-
cation mode. Fig. 4(b) shows the modified CDFGs and the
corresponding CDFG statements.

Besides changing the control-flow of the circuit, func-
tionality is also modified by introducing additional datapath
components. However, such changes are done in a manner
that ensures sharing of the additional resources during syn-
thesis. This is important since datapath components usually
incur large hardware overhead. An example is shown in Fig.
5, where the signal out originally computes (a+0b) X (a—b).
However, after modification of the RTL, it computes (a +b)
in the obfuscated mode, allowing the adder to be shared
in the two modes and the outputs of the multiplier and the
adder to be multiplexed.

2.4 Generating obfuscated RTL

After the modifications have been preformed on the
CDFG, the obfuscated RTL is generated from the mod-
ified CDFGs, by traversing each of them in a depth-
first manner. Fig. 6(a) shows an example RTL and
Fig. 6(b) shows its obfuscated version. A 4-bit FSM
has been hosted in registers int_regl and int_reg2. The
conditions int_regl[13:12]=2'b00, int_regl[13:12]=2'b01,
int_reg2[13:12]=2'600 and int_regl[13:12]=2'b10 occur
only in the obfuscated mode. The initialization se-
quence is inl=12'h654 — in2=12'h222 — in1=12'h333 —
in2=12'hacc — in1=12'h9ab. Note the presence of dummy
state transitions and out-of-order state transition RTL state-
ments. The outputs res/ and res2 have been modified by
two different modification signals. Instead of allowing the
inputs to appear directly in the sensitivity list of the “if()”
statements, it is possible to derive internal signals (similar
to the ones shown in Fig. 4(b)) with complex Boolean ex-

Original RTL and CFG

always @(posedge clk or posedge rst) begin
if (rst) myreg1 <= 2'b0;
else if (!ctrl)
case(select)
2'b00: myreg1 <= 2'b01;

2'b01: myreg1 <= 2'b00;
2'b10: myreg1 <= 2'b11;
2'b11: myreg1 <= 2'b10;
endcase
else myreg1<=a;
end

bid
TyregT
=200 | [

TyregT
:= 2’01

myregT
=210

always @(posedge clk or posedge rst) begin
if (rst) myreg2 <= 3'b0;
else if (en) myreg2 <=a + b;
else myreg2 <= b;

end

assign mywire1 = (a & b) | (c&d);

Mywire1
:= (agb) | (c&d)

(a)

Obfuscated CFG and RTL

assign cond1 = (reg1 == 20'habcde);
always @(posedge clk or posedge rst) begin
if (rst) myreg1 <= 2'b0;
else if (Ictrl)
case(select)
2'b00: begin
if (cond1) myreg1 <= 2'b11;
else myreg1 <= 2'b01;
end
2'b01: myreg1 <= 2'b00;
2'b10: myreg1 <= 2'b11;
2'b11: myreg1 <= 2'b10;
endcase
else myreg1<=a;
end

:=2'b0

assign cond2 = (reg2 == 12'haaa)
always @(posedge clk or posedge rst)
begin
if (rst) myreg2 <= 3'b0;
else if (en) begin
if (cond2) myreg2 <= ~(a + b);
else myreg2 <= (a + b);
end
else myreg2 <= b;
end

assign cond3 = (reg3 == 16'hb1ac);
assign mywire1 = ((a & b) | (c&d)) A cond3 ;

mywiret
:=~((a&b) | (c&d))

(b)

mywire1
:= (agb) | (c&d)

Figure 4. Examples of control-flow obfuscation: (a) original RTL, CDFG; (b) obfuscated RTL, CDFG.

pressions which are used to perform the modifications. The
output res/ has been modified following the datapath mod-
ification approach using resource sharing.

3 Obfuscation Efficiency

In this section, we derive a metric to quantify the effec-
tiveness of the proposed obfuscation technique. We then
propose a method to improve the obfuscation efficiency un-
der overhead constraint.

3.1 Measures of obfuscation efficiency

Since obfuscation of RTL IP serves similar objective as
software IP obfuscation, we borrow ideas from software ob-
fuscation to estimate the success of the proposed obfusca-
tion scheme. In software engineering, the success of obfus-

Original RTL assign out = (a+b) * (a-b)
Modified RTL assign out = (mode_ctrl) ? (a +b) : (a+b) * (a-b)

Shared resource
femmeees

: ; M out
b L i I_ X u
a N (atb)*(a-b)
b a-b
mode_ctrl

Figure 5. Example of datapath obfuscation al-
lowing resource sharing.

408

cation is measured by the the following characteristics of
the obfuscated code [5]:

e Potency: the complexity in comprehending the obfus-

cated program compared to the unobfuscated one.
Resilience: difficulty faced by an automatic obfuscator

in breaking the obfuscation.
Stealth: how well the obfuscated code blends in with

the rest of the program, and
Cost: how much computational overhead it adds to the

obfuscated program.

In our scheme, the potency is estimated by the struc-
tural and functional differences between the obfuscated and
the original circuit. We estimate the success of the func-
tional/structural modification by the percentage of nodes
failing verification when the original and the obfuscated de-
signs are subjected to formal verification. This is because
the modifications in the control and data flow of the circuit
has a direct impact on the Boolean functionality of the inter-
nal nodes in the circuit, which in turn modifies the Reduced
Ordered Binary Decision Diagram (ROBDD) representa-
tion of the logic network representing the nodes [10]. Since
formal verification is mostly based on the comparison of
the ROBDDs of two corresponding nodes in two designs, a
higher percentage of verification failures indicates that the
obfuscated design differs substantially from the original de-
sign in both functionality and structure.

The resilience and stealth of our obfuscation scheme is
estimated by the degree of difficulty faced by a hacker in
discovering the hosted mode-control FSM and the modifi-
cation signals. Consider a case where n mode-control FSM

module ex (clkrst,int,in2 res1,res2);
input clk, rst;

input [11:0] in1, in2;

output [11:0] rest;

output [23:0] res2;

module ex (clk,rst,int,in2,res1,res2);
input clk, rst;

input [11:0] in1, in2;

output [11:0] rest;

output [23:0] res2;

reg [11:0] rest;
wire [23:0] res2;
reg [13:0] int_reg1;
reg [13:0] int_reg2;

reg [11:0] rest;
wire [23:0] res2;
reg [11:0] int_reg1, int_reg2;
assign res2 = (in1 +in2) * (in1 - in2); assign res2 = (int_reg1==14'h1111 | int_reg2==14'n2123 | int_regi==
14'h0111 | int_reg2==14'n0222) ? (in1+in2) : (in1+in2)*(in1-in2);
always @(posedge clk or negedge rst) begin
if (Irst) res1 <= 12'b0;
else res1 <= int_reg1 A int_reg2;
end

always @(posedge clk or negedge rst) begin
if (Irst) begin
res1 <= 12'b0;

i int_regl <= 14'b0;

i int_reg2 <= 14'b0;

E end

else begin

 res1 <= int_reg1[11:0] * (int_reg2 & (int_

[int_regt <= ((int_reg2==14'h1ddd | int_re

always @(posedge clk or negedge rst) begin
if (Irst) int_reg1 <= 12'b0;

1=1403111));

12'hddd & in1==12'hef) ? 12'hbbb
'ha65) ? 12’456

= Zhaaa&m ==12'hbcd) ? 12hcce

14'h2eee - ((
14’h0ccc : (& ?
int_reg2 <= (int_regt=

always @(posedge clk or negedge rst) begin
if (Irst
int regz <=12'b0;

12'hbbb & in1==12'ha0b) ? 12hddd
ha65) ? 12111

14'h1aaa : (um reg
heef) ? 12'haaa

141000 : (%ind) ? {2 bm.mumz) @b11,in1fin2);
end

end

endmodule (b)

end
endmodule (a)

Figure 6. Example of RTL obfuscation: (a)
original RTL; (b) obfuscated RTL.

Input: RTL IP Core,
% Area Overhead, !
Obfuscation Level (Mo !

l J

Design Mode-Control FSM

| Derive length of init. sequence |
1
Add dummy state transitions]!
¥ i
1

| Perform random state encoding I-

| Derive (random) init. key IE

I Derive # of host registers (n) IE

| Derive pool of mod. signals (m) I:
'

'
Output: H
I]

&

Analyze RTL

—— 2
Modified CDFGs

L

——I Obfuscate CDFG .
+ \‘ 1 Integrate Mode-Control FSM | :
[Generate Obfuscated RTL |\ | with the org CDFGs '

v
L] \ FeromeE e |
[Synthesize | v modifications '
: |

No N \

Decrease <Area cons. satisfied?
Nmad

Enabling Key

(Output: Obfuscated RTL,)

Figure 7. Steps of the proposed RTL obfusca-
tion methodology.

state-transition statements have been hosted in a RTL with
N blocking/non-blocking assignment statements. However,
the hacker does not know a-priori how many registers host

the mode-control FSM. Then, the hacker must correctly fig-
ure out the hosted FSM state transition statements from one

N
out of Z (k) possibilities. Again, each of these choices

for a gi{Ien k has k! associated ways to arrange the state tran-
sitions (so that the initialization key sequence is applied in
the correct order). Hence, the hacker must correctly iden-

~((N
tify one out of Z ((k) - k!) possibilities. The other

k=1
feature that needs to be deciphered by the hacker are the

mode control signals. Let M be the total number of block-
ing, non-blocking and dataflow assignments in the RTL, and
let m be the size of the modification signal pool. Then, the
hacker must choose m signals correctly out of M signals,

which is one out of choices. Combining these two

security features, we propose the following metric to esti-
mate the resilience and stealth of the obfuscated design:

1
My = (M

= ((0)#)- ()

A lower value of M, indicates a greater obfuscation
efficiency. As an example, consider a RTL with values
N = 30, M = 100, in which a FSM with parame-
ter n = 3 is hosted, and let m = 20. Then, My, =
7.39% 10726, In other words, the probability of the hacker
reverse-engineering the complete scheme is about 1in 1027,
In practice, the values of n and M would be much higher in
most cases, making M;; smaller and thus tougher for the
hacker to reverse-engineer the obfuscation scheme.

The cost of our obfuscation scheme is measured by the
increase in compilation time and design overheads of the
obfuscated design compared to the original design, as dis-
cussed in Section 4.

4 Results

Fig. 7 shows the steps of the proposed design obfus-
cation methodology. The input to the flow is the original
RTL, the desired obfuscation level represented by the ob-
fuscation metric (M), and the maximum allowable area
overhead. It starts with the design of the mode-control FSM
based on the target M,,s. The output of this step are the
specifications of the FSM which include its state transition
graph, the state encoding, the pool of modification signals,
and the initialization key sequence. Random state encoding
and a random initialization key sequence are generated to
increase the security. The steps described in Section 2 are
then performed. The obfuscated RTL is synthesized, and if
the area overhead exceeds the overhead constraint, the num-
ber of modifications (/V,,,4) is decreased by a pre-defined

Table 1. Obfuscation Efficiency and Design Overhead (at iso-delay) for a Set of Open-source IP Cores

(for 5% Target Area Overhead)

1P Sub- # of Obfuscation Efficiency Design Overhead Run time
Cores Modules Mods. | Failing Verif. Pts. (%) [M,y | Area (%) | Power (%) (s)
post_norm 20 98.16 1.56e-37 8.22 9.14 27
pre_norm 20 94.16 1.24e-33 9.39 9.79 25
FPU [pre_norm_fmul | 20 90.00 7.36e-24 8.30 9.69 20
except 10 100.00 6.85e-24 7.56 8.73 14
control_wopc 20 92.79 7.53e-43 8.74 8.97 29
TCPU mem 10 97.62 2.06e-20 | 829 9.76 15
alu 10 97.62 9.82e-16 9.59 9.88 15

step and the process is repeated until the target area over-
head is satisfied.

The proposed flow illustrated in Fig. 7 was implemented
in TCL language and effectiveness of the obfuscation ap-
proach was studied for two Verilog IP cores - a single preci-
sion IEEE-754 compliant floating-point unit (“FPU”), and
a 12-bit RISC CPU (“TCPU”), both obtained from [11]. In
each case, the mode-control FSM was implemented using 4
state elements, with a initialization key sequence of length
3. The FSM was hosted in three RTL statements (n = 3).
The size of the pool of modification signals was taken as
ten (m 10). Logic synthesis was carried out by Syn-
opsys Design Compiler, using a ARM 90-nm standard cell
library. Formal verification to estimate the difference be-
tween the original and the obfuscated design was carried
out using Synopsys Formality. All simulations were carried
out on a HP Linux workstation with a 1.5GHz processor
and 2GB main memory.

Table 1 shows the obfuscation efficiency and the associ-
ated design overheads and the run-times, with the number of
modifications adjusted for a 10% target area overhead. All
results presented are at iso-delay. Note that all the modules
had an area overhead less than the target area overhead of
10%. The functional obfuscation efficiency was estimated
by the number of verification failures between the original
and the obfuscated designs, while the semantic obfuscation
efficiency was estimated by the metric M, as defined in
Section 3. The increase in the compilation time of the ob-
fuscated RTL with respect to the original RTL was negligi-
ble. The proposed flow was also very efficient in terms of
run time, as seen from the table.

5 Conclusion

We have presented a practical RTL hardware IP protec-
tion technique based on a key-based obfuscation scheme.
We integrate a small FSM of special structure into the de-
sign which affects its control and data flow based on the

410

FSM states. The technique works on the CDFG representa-
tion of a design and can be easily automated. The proposed
obfuscation technique provides an active defence mecha-
nism that can prevent IP infringement at different stages of
integrated circuits design and fabrication flow, thus protect-
ing the IP vendors’ interest, while incurring low design and
computational overhead. Future work will include improv-
ing the obfuscation level and design overhead by extracting
and using unreachable states of a RTL design.

References
[1] E. Castillo, et al. IPP@HDL: efficient intellectual prop-
erty protection scheme for IP cores. IEEE Trans. on VLSI,
15(5):578-590, 2007.

R.S. Chakraborty and S. Bhunia. Hardware protection and
authentication through netlist level obfuscation. Intl. Conf. on

CAD, 2008.
R.S. Chakraborty and S. Bhunia. Security Through Ob-

scurity: An Approach for Protecting Register Transfer Level

Hardware IP. HOST, 2009.
X. Zhuang, et al. Hardware assisted control flow obfuscation

for embedded processors. Intl. Conf. on Compilers, Arch. and
Synth. for Embedded Systems, 2004.

C. Collberg, C. Thomborson and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. Symp. on
Principles of Programming Languages, 1998.

Thicket™ family of source code obfuscators. [Online]. Avail-
able: http://www.semdesigns.com.

T. Batra. Methodology for protection and li-
censing of HDL IP. [Online]. Available: http:
//www.us.design-reuse.com/news/?id=
12745\&print=yes.

R. Goering. Synplicity initiative eases IP evaluation for
FPGAs. [Online]. Available: http://www.scdsource.
com/article.php?id=170.

M. Brzozowski and V.N. Yarmolik. Obfuscation as intel-
lectual rights protection in VHDL Language. Intl. Conf. on
Comp. Info. Syst. and Indus. Management App., 2007.

[10] R.E. Bryant. Graph-based algorithms for Boolean function

manipulation. /EEE Trans. on VLSI, 35(8):677-691, 1986.
[11] [Online]. Available: http://www.opencores.org.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

