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Abstract

The focus of this project is to provide methods for calibra-
tion of sensor nodes in sensor networks. The importance of
the calibration problem is to compensate for the sensor read-
ing drifts that occur due to systematic errors, noise or sen-
sor degradation. The objective is to provide calibration tech-
niques that apply on collaborative sensors autonomously, i.e.
without supervision. Our work involves: a) distributed proce-
dures to identify erroneous sensors; and b) a simulator frame-
work for a sensor net drift calibration setups.

1. Overview

e Motivation. The deployment of sensor networks has been
growing in scale and scope with new applications in embed-
ded and challenging environments. This progress has been
facilitated by advances in nanoscale electronics that can be in-
tegrated with MEMS optical and biochemical technologies to
build tiny sensor nodes, [1]. However, there are several is-
sues and difficulties in building such sensor nets. In addition
to reliability concerns of the sensor nodes and their communi-
cations, there is a significant problem with the drift of sensor
readings from their correct values. A variety of sensor appli-
cations use MEMS for realizing the transduction mechanism.
Along with degradations in the micromechanical parts due to
environmental effects, wear and tear [2, 3], the signal condi-
tioning and read-out circuitry also suffer from both systematic
and random degradations inducing errors in the sensor reads.
Sensor calibration has been used over time to correct the
reading drifts. Traditionally, calibration is applied on sensors
at the micro level, meaning on individual sensor nodes either
at the factory or in the network off-line. However, micro-level
calibration may not be feasible due to many difficulties such
as remote access, security, size of sensor net and device degra-
dations. There is need for network based calibration, i.e. au-
tonomous calibration by collaborating sensor nodes.
o Related Work. The problem of calibration of sensor nodes
has received considerable attention in research works. Earlier
calibration was performed on each sensor at the factory or in
the field using simple built-in techniques [4]. Calibration in
traditional sensor networks is still being done individually.
Most of the recent research has focused on location discov-
ery of sensor nodes. The early work on SpotON [5] modeled
the signal to distance relation between transmitting and receiv-
ing sensors off-line. Another project targeting location discov-
ery is Calamari, [6], which formulates a calibration approach
to sensor localization as a parameter estimation problem. A
two-phase collaborative technique is used in [7] where first all
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pair-wise calibration functions are found and then they are op-
timized to produce the global calibration function for the net.
In the SCAAT project [8], a mathematical technique is used
for tracking position and orientation while performing sensor
autocalibration. Dynamic fine-grain localization is reported in
[9]. More recently. a calibration approach to location estima-
tion is taken in [10] using nonlinear least-squares optimiza-
tion. Nonparametric statistical techniques are used in [11] to
introduce an error model of the calibration process.
Calibration research addressing tracking based on signal
processing and filtering is reported in [13]. Additional work
on sensor ranging issues is reported in [14, 15]. The exposure
problem in wireless sensor nets is discussed in [16]. Calibra-
tion work on robotic sensors is in [17, 18]. The work in [17]
exploits the intrinsic sensor mobility to effect the calibration
process. Calibration issues concerning chemical and biosen-
sors are discussed in [19, 20]. Methods for drift compensa-
tion in humidity, pressure and gas sensors have been devel-
oped based on Neural Networks [21, 22], using wavelet trans-
forms [23], Kalman filtering [24], and other learning tech-
niques [25]. These methods are computationally too expen-
sive for low-cost sensors.
e Objectives. The goal of this work is to develop a calibra-
tion methodology for embedded or dense sensor nets to ad-
dress error readings due to sensor degradations. Our approach
uses distributed techniques, driven by collaborating nodes, to
discover erroneous sensors. These techniques are employed
on the network autonomously to identify sensors with errors,
Our research project provides calibration procedures and de-
sign techniques to address these sensor drift problems. The
following significant differences distinguish our work from
the ones cited above: a) Most of the previous sensor cali-
bration research do not deal with the network-based and the
self-calibration problem; b) the few proposed self calibration
techniques [16] do not provide distributed algorithms to ad-
dress the self calibration problem; c) a simulator framework
for a sensor net drift calibration setups.

2. Background

Sensors are small devices positioned in possibly adverse
environment for monitoring and measuring phenomena occur-
ring, for example, in physical, chemical, or biological pro-
cesses. Often sensors operate collaboratively in a network
communicating their measurements to remote gateways or sta-
tions. Sensor networks can be wireless, for instance sensors
monitoring environmental conditions of an open area, or em-
bedded, e.g. biosensors linked into monitoring human or an-
imal body parts. Miniature sensors or microsensors concen-



trate in dense networks to provide collaborative measurements
of localized points. Examples of dense sensor networks are in
applications such as smart dust and smart clothing [26].

It is well known that the measured values of sensors may
deviate from the actual values due to the following reasons:
a) manufacturing tolerance of electromechanical components
[4]; b) process variation and degradation in the electronic de-
vice [27]; c) external effects such as noise [4]. Traditionally,
calibration has been used to address these errors. Calibration
of equipment or devices is a systematic method to adjust a
measured value to the correct value. Depending on the na-
ture of reading errors, there are at least three kinds of calibra-
tion approaches addressing the following errors: 1) System-
atic errors. This is the usual calibration approach correcting
the bias inaccuracies due to manufacturing tolerances. More-
over, semiconductor process variation may also produce de-
vice variance and reading errors. 2) Device degradation errors.
There are several device characteristics that can be degraded
after manufacturing, i.e. in the field, which may affect both
the performance and the output values. 3) Noise errors. These
may be due to transient events, hardware noise or other effects
that influence sensor readings.

Normally, calibration due to systematic errors is initially
performed on single sensors during manufacturing. This con-
cerns both component tolerance and device process variation.
Calibration is still needed at setup time in the field to account
for the environment. However, there are issues with single
sensor calibration in large sensor networks. Some of them ac-
cording to [6] are: a) limited access to the sensor network and
b) complex dynamic environmental effects. A network cali-
bration for systematic bias is proposed in [7] based on sensor
redundancy. We need to make a note about two issues, orien-
tation and distance, that may affect sensor readings. Except in
[16], previous works do not account for the “angularization”
issue of the sensors in the field. Suppose there is a collection
of sensors 1, sg, ... all measuring the same physical variable
with respect to a reference point X. Depending on the topol-
ogy, each sensor has its own angular orientation to the refer-
ence point. Our view is that the effect of this orientation may
be reflected as bias on the sensor readings and corrected by
systematic calibration. The distance between sensors and the
reference point may also affect their reading. In other words,
two sensors s; and so that have the same orientation towards
X but different distances from X may well get different read-
ings. In many cases, the reading values may simply be propor-
tional to the distance. If the relation between sensor reading
and distance is known from the factory we may also be able to
use systematic calibration of the distance effect on the sensor
readings. About noise, we may assume that it can be filtered
out, e.g. by the well known technique of averaging over time.

The focus of this work is on calibration of errors due to de-
vice degradation effects. It has been observed that several de-
vice characteristics can be degraded after manufacturing lead-
ing to degradation of important parametric aspects such as la-
tency, energy consumption of the sensor device level compo-
nents. This degradation not only influences the sensor output
readings but it may also affect the sensor performance in terms
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of power and timing. We consider such degradations of the
output value, the power, and the timing as sensor errors that
need calibration. Systematic calibration can not be used to
correct device degradation effects. Note, calibration address-
ing sensor power or performance has not been reported. In the
following we discuss a new network calibration method that
applies to sensor errors due to device degradations.

3. Network Based Calibration

e Concepts. Suppose S = {s1, ...,8,} is a set of n sen-
sors in a dense sensor network. The objective is to measure
collectively a certain physical variable with respect to a refer-
ence point X. We assume that each sensor is equipped with
limited computational capability (e.g. no division), limited
memory and limited energy. Sensors can communicate one-
to-one wirelessly, or via a fabric matrix (e.g. smart clothing).
We also assume that S has been calibrated for systematic bias,
sensor orientation and distance.

We now consider the device degradation effects on sen-
sor readings. Suppose s (t) denotes the output reading of
the k-th sensor at time ¢. Let s} (¢) denote the true output
value of the k-th sensor at time ¢. We observe that because of
systematic calibrations all true sensor outputs at time ¢ with
respect to X should be equal, i.e. s)(t) sh(t)
st (t). The deviation of the sensor s output at time
tis Ag(t) = sp(t) — s)(t) whereas its drift is defined as
0k(t) = |Ag(t)|- Note the deviation Ak (t) may be positive
or negative as the degradation affecting s, may produce larger
or smaller output values than the true value. We assume that
the sensor drift is changing over time but it does so slowly.
This means that the sensor drift can be stationery within a rea-
sonable time window. In other words, it varies like a staircase
step function in time. The drift of a sensor is acceptable if
0r(t) = |sk(t) — s.(t)] < e where e, the threshold drift,
is a small positive number established by the sensor specifica-
tions. By definition, all sensors satisfying the above relation
constitute a sensor bundle. In what follows we will relate sen-
sor reading statistics to the threshold drift and sensor bundles.

In this work, we assume that the statistical distribution of
the sensor readings over a time window ¢ is close to normal.
In support of this claim, we remark that if the sensors in S
comprise an unbiased sample of sensors from the overall fac-
tory production, then their readings may well fit into the nor-
mal distribution, in accord with the statistical sampling theory.
The real scenario we expect is that some of the sensor readings
will be outliers, i.e. either ’too low” or “’too high”. Under this
scenario, the sensor readings have a focused distribution with
low standard deviation o. This also means that the mean p
and the median of the readings are close to each other within
€, and further, they are also close to the true sensor readings s},
for all £ = 1,...,n. It should be noted, however, that despite
our assumption about near normality of the readings distribu-
tion, we do not actually know their statistics 4 and ¢ apriori.
Nonetheless, it would be interesting to consider the relation-
ship between the threshold drift € and the standard deviation
o of the sensor statistics. In some cases it would suffice to
assume € ~ 20, at least if we go by the well known 68% rule
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of normal distributions. Since we do not actually know p and
o, one idea is to use hints on € values by experimentation.

3.1. Calibration Procedures and Strategies

The first problem we have concerning the sensor calibra-
tion under device degradation is as follows: given a set of
readings of the sensor net S over a time window ¢ and a thresh-
old drift €, find an optimal sensor bundle, i.e. a maximal subset
of sensors {sy} that satisfy the above threshold drift relation.
By "maximal subset” we mean a subset containing a maximal
number of sensors.

The rationale of this problem goes as follows. Initially, we
do not assume that we know what is the true s}, value. How-
ever, under the normal distribution assumption, the mean p is
close to s). Therefore, an optimal bundle (maximal subset)
of sensors should include p and hence the true s}.. All sensors
within the optimal bundle will be considered as having accept-
able readings and thus should not need calibration. The rest
of sensors outside the optimal bundle are outliers and would
need calibration.

Before discussing our strategy to solve this problem, we re-

mark that the intent of our approach is to use distributed algo-
rithms as they apply to a dense sensor network, autonomously.
Clearly, distributed techniques over the net are more fault tol-
erant than centralized ones employed on a single node. Our
minimal sensor requirements are:
a) point-to-point message communication — limited data trans-
fers; b) simple arithmetic operations (e.g. no multiplication
and division) — limited memory and energy consumption; c)
broadcast to all, or selectively some, sensors certain signals;
d) distributed time awareness.

We assume that all sensors are identified by indexing IDs
such as 1,2, ..., n. Initially, each sensor contains a numerical
label or token, Z(sg) = zx, k=1,2,...,n. Itis understood
that the labels are ordered as 21 < 2o < ... < z,. In other
words, the sensors can identify that z5 < zg, thus 2; and z,
are the minimum and maximum labels, respectively.

Our approach involves three major procedures.

Procedure 1 — find the sensor with the maximum reading;
Procedure 2 — sorting the sensors by their readings;
Procedure 3 — constructing sensor bundles and sliding the
bundles until discovering the optimal one.

In the following we propose distributed based solutions to the
above parts of the problem.

Procedure 1. We propose a distributed searching algorithm
based on a heap binary tree composed of the sensor nodes.
The idea is to pairwise compare the sensor readings and se-
lectively change label pairs. Following are the steps of this
procedure illustrated by the example of Fig. 1.

1) The first step of the algorithm begins by engaging the fol-
lowing sensor pairs {1,2}, {3.4} ,..., {(n — 1),n}, concur-
rently, with each node pair comparing their readings. There
two procedural parts: a) Relabelling and b) Re-indexing. a)
Whenever a node pair realizes that the comparison result is
in reverse order to their corresponding labels, then they inter-
change their labels. More precisely, if s > sp41 and 241 <
21, then the nodes exchange their labels, i.e Z(s;) = 2g+1,
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and Z(sp+1) = zk; otherwise, the nodes keep the same la-
bels. At the end of this step, the node with the largest label
in each pair is the winner node. b) The winner node is issued
a new (additional) index ID for broadcasting purposes. The
new index is the maximum index of the two engaging nodes
divided by 2 (easily done by shifting). Thus if nodes 3 and 4
are engaged, the winner of 3 and 4 gets a new index equal to
2. The winners still keep their original indices.

2) We continue with the next steps by engaging the win-
ner nodes of the previous step, relabelling and reindexing as
needed. The node pair engagement will be done on the basis
of newly issued index IDs. Thus in step k the node pairs are:
{1,2},{3,4}, ..., {2m~F=1 —1, 2m~F=1} assuming for sim-
plicity that n = 2™. There is only one set of indices issued in
each step, previous indices are discarded.

3) In every step, there is need for broadcasting synchroniza-
tion signals, as follows. i) A winner node broadcasts a signal
to the other nodes indicating its readiness for engagement. ii)
The appropriate winner node, i.e. its mate in the correspond-
ing node pair, responds when ready. iii) This is done by all
winners that are not engaged.

4) The procedure terminates when a single winner node re-
mains whose label is then z,, the largest label. Because of
point-to-point communication, the complexity of this algo-
rithm in the number of steps is O(logn).

1

Sensor Index 1
Sensor Readings

Initial Labels 7 z8

Relabeling 1 18; Sz

Relabeling 2 .28 2 z7

Relabeling 3 “z4 N

z7 24

27

Relabeling ...

Final Labels z8 z4 z5 z6 z2 23 27 z1

Figure 1. Distributed maximum search and sorting example

The above algorithm is illustrated by the example of Fig. 1
showing eight sensors, 1, ..., 8, their reading values and their
initial labels, z1, ..., z3. Relabelling 1 occurs for sensor pairs
1,2 and 7,8. After two more relabelling, the process termi-
nates with node 1 obtaining label zg corresponding to the min-
imum reading value 10. The re-indexing of the winner nodes
is also shown, for example, the node with original index 7 is
a winner in step 2 and re-indexed as 4. Note, relabelling of
two nodes may require additional relabelling to maintain the
validity of the labelling rules, as shown in Fig. 1, last line.
Procedure 2. For the sorting part of the problem, we can work
on the same node heap structure of Fig. 1 proceeding to find-
ing the second largest sensor reading, and so on. More specif-
ically, once the maximum reading node is found, here node 1,
this node is removed from the heap. Then, the searching pro-
cess for the next maximum resumes on the remaining nodes.
This step, i.e. Procedure 1, is repeated through iterations till



the heap contains one node, the minimum reading node. Note
each maximum node needs to broadcast a reset signal to all
others to restart the process. The overall complexity of both
methods is at worst O(nlogn). The intermediate steps of this
process are not shown in Fig. 1.

Figure 2. sensor bundle groupings

Procedure 3 — Optimal Bundle. We will now propose a dis-
tributed procedure to determine bundles of sensors within the
threshold drift e. First we assume that the sensors have been
already sorted by their reading values as described earlier. The
procedure is best described by reference to the example Fig. 2.
This figure represents the sensors s, ..., S24 and their readings
X1, Xo, ..., Xoq4 in incremental order, respectively. Note the
sensor indices 1, 2, ... now correspond to their ranking labels
2, (dropping z), as discussed earlier, shown in the horizontal
axis of Fig. 2. The procedure may begin with the smallest or
the largest sensor readings. The steps follow.

1) Begin with sensor s; (smallest reading), send X + € to sen-
SOrS So, S3, ..., Sk_1; test in each sensor that X; + € < Xg_1.
This step terminates at the first sensor s,, that X; +¢ > X,,.
This occurs at g1 = 2, Fig. 2.

2) Mark sensor s4, _1 by M 4, 1 indicating the sensor bundle
By = {s1,...,Sq,—1}- Thesize of the bundle is | B;| = ¢1—1.
In Fig. 2 the first bundle contains only s;.

3) Continue with sensor si, & > ¢ repeating steps 1) and
2) as above until finding the next marker sensor, Sp4q,—1
marked as M, A new bundle is obtained namely

q1,92—1-
By = {54y, Sqp—1} With size |Ba] = ¢2 — ¢;. In our
running example, this marker sensor is s3 and the bundle is
BQ = {827 83}.

4) At the end of step 3) the two successive markings M 4, 1
and My, 4,—1 are compared. If | Ba|— |B1| = g2 —q1 < g1 —1
then My, 4,1 is discarded whereas M 4, 1 is to be passed
along to the sensors for the next bundle. Otherwise, marking
My, 4,—1 1s maintained as active for the next steps. In our ex-
ample, marking M5 3 remains active while M is removed.
5) The procedure continues forming bundles until reaching the
last one which includes the last sensor s,,. There is only one
marker active from bundle to bundle, in the end the remaining
marker corresponds to the optimal bundle.

Continuing with our example, the third and fourth bundles
are By = {s4,...,820}, Bs = {s21,..., S24}, with markers
My 20, Moy 23, respectively, and marker My oo wins, meaning
Bs is the optimal bundle. After deriving the optimal bundle,
any sensor within it could be used as reference for calibration,
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for example, the marker sensor reading. Incidently, the sen-
sor net can not directly compute the mean or other statistics
because its nodes lack arithmetic capability, e.g. division.

The complexity of the above procedure appears to be linear
with n. However, there is an implicit assumption that we do
not consider overlapping bundles. The latter can be consid-
ered by modifying step 3) above to include the omitted sen-
sors. Although some of the bundles may be subsets of others,
in general there may well be overlapping bundles. If we in-
clude all bundles, then the complexity may be O(n?) at worst.
However, we conjecture that if the distribution of sensor read-
ings is about normal, there is very high chance that the above
linear procedure will find a near optimal bundle which will
include all sensors of the optimal except few outliers.

One more comment about the bundle approach. Procedures
1 and 2 do not require knowledge of the sensor reading statis-
tics whereas Procedure 3 is very efficient for near normal dis-
tributions. Nonetheless, the proposed bundle approach can be
adjusted to apply to other reading distributions that are not
normal, for example, bimodal type of distributions, or distri-
butions with several peak concentrations, or monotonically in-
crementing characteristics.

3.2. Sensor Mesh Calibration

A mesh or array of sensors is sometimes an attractive topol-
ogy for a sensor net. This is the case for sensor fabrics in smart
clothing but also of acoustic or ultrasound sensors spread over
mesh like nets on the ground or underwater for security appli-
cations. Other applications concern array radar sensors such
as phased array radars or MIMO array radars. In our case, we
will consider the calibration problem of a mesh like sensor net
as illustrated in Fig. 3.

The calibration problem of this net can be approached by
the distributed searching and sorting methods provided earlier.
However, we will address this problem taking into consider-
ation the mesh topology using near-neighbor communication
of sensors rather than point to point communications. This
means that sensors can transmit directly horizontally, verti-
cally and diagonally in the network mesh. Assuming a m x m
mesh, our approach is as follows.

Step 1: Perform distributed searching on each row mesh.

Step 2: Perform inter row searching in the mesh.

Performing row searching in m sensor row can be done in &
sessions where k=logm. As shown in Fig. 3 (left), session 1
compares adjacent sensors to produce a winner; session 2 gen-
erates session 2 winners, and session k, k = logm, generates
the row winner. Note the number of sensor transmission hops
over all k sessions is

T =1+(22 -1+ ..+ (2F-1) = 21 — (k4 1)
2m — (1 +logm) = O(m).

For inter row searching, we compare the row winners using k
session comparisons, as shown in Fig. 3 (right). In each ses-
sion a winner needs to traverse at most m — 1 hops to reach a
corresponding winner. For example, if sensors sgp and s37 are
winners in session 1, then 7 traversal hops are needed for com-
parison to produce the winner in session 2. The total number
of hops are: (m — 1)logm; Thus the overall number of hops
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Figure 3. Calibration of mesh like sensor net.

for the n = m x m mesh is

T, = 2m— (1+logm) + (m — 1)logm O(mlogm)
Now to complete the sorting we will need at most n x mlogm
hops and since n = m? we need O(n'-5logn) overall hops.
Although the distributed processing on the mesh seems to be
longer than in point to point communication, however, the
mesh is more realistic and it does account for variation in dis-
tances among the sensors.

e Sensor parameter gradient. Our basic assumption about
our calibration process is that the sensor readings of a param-
eter are invariant over the net within a time window. How-
ever, this assumption may not be valid for some applications
such as temperature sensors over a vineyard field. In other
words, there may be a significant temperature gradient over
the sensor net. This is an important issue affecting calibration
in some practical applications and requires further investiga-
tion. We have made some observations which may help out in
this regard.

Let si(t) be the k-th sensor reading, e.g. temperature,
without any additional gradient. If we assume there is an
extra gradient spreading over the sensor mesh from row to
row we can express this by an extra value Yy (¢). Thus the
actual sensor reading is Yy (t), =, sx(t) + Yi(t). Then,
E[Z] = El[s] + E[Y], where E[Z], E[s] and E[Y] are the
expected values of the distributions of the variables Z, s and
Y, respectively. This means if the statistics of the gradient
parameter Y are known then the previously proposed bundle
searching method can be applied since E[s] = E[Z] — E[Y].
To estimate these statistics, one idea is to sample each sen-
sor to obtain readings within a short time window right after
installation, when the drift is zero. This will capture average
reading for each sensor and lead to an average gradient esti-
mate. This technique can be repeated after each calibration
when the drift is again zero.

4. Discussion of Other Calibration Issues

The previous procedures separate from the sensor net those
sensors that have potential degradation problems. We will
consider several methods to deal with these outlier sensors.
a) Treat the problem by systematic calibration; b) discard the
sensors as being uncalibratable;

a) Temporary Systematic Calibration. It may be possible to
treat the unacceptable sensor drifts by systematic calibration
using the base sensor readings obtained by Procedure 3 as ref-
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erence. This entails mapping of a degraded sensor reading,
for example, sy in Fig. 2, to the base reading in the optimal
bundle, s1g. For this to work, we will need to perform this
action over a range of sensor readings to obtain a meaningful
calibration mapping table. One could also use the curve fitting
method of [11] for mapping. However, these mappings may
only be valid over a time window, because the degradation ef-
fects may progressively increase in some sensors, which then
requires the whole process to be repeated. Thus systematic
calibration can only be used as a temporary fix.

b) Uncalibratable sensors. In some cases, it may be deter-
mined that a sensor is not calibratable, for instance if some
parametric characteristic has deteriorated, beyond recovery.
This of course depends on the sensor net operating policy. In
that case, it may be worth decommissioning those sensors.

Size and Scalability. There is a question as to how Procedures
1, 2 and 3 scale with the size of the net n. We address this
issue for both the point to point and the mesh like sensor nets.
Given a sensor net S with |S| = n, consider R being a random
sample of sensors taken from S with size |[R| = m such
that n > m. Assuming again that the probability distribution
of readings is close to normal, then for sure the probability
distribution of sensors from R will also be close to normal.
This means, Procedures 1, 2 and 3 would apply on R with the
benefit of much smaller sensor subnet size m. Then we would
have an optimal bundle of sensors in R which could be used
as good reference readings to calibrate the entire sensor net.

Another idea to address scalability is to introduce monitor
sensors. These sensors are not used to measure any physical
phenomena, their sole purpose is to monitor the rest of sensors
in the net. Then the entire sensor net may be clustered around
each monitor sensor based on some proximity distance sensor-
to-monitor scheme. For example in Fig. 3, sensor 11 could be
a monitor of the sensors on the surrounding rectangle. We may
assume that the monitors have greater computational capabil-
ity than the main sensors and thus Procedures 1, 2, 3 could
be implemented on each monitor. The entire processing will
now require two steps. a) Centralized processing: the sensors
in each cluster will transfer their readings to their monitors to
locally perform Procedures 1, 2, 3. b) Distributed processing:
Once the monitors get their results, the distributed Procedures
1,2,3 will be performed as stated earlier. The validity of the
2-step process is based on the fact that the mean of the en-
tire distribution is equal to the mean of its constituent cluster



means — captured by the monitors.

Consideration of Power and Heat type Errors. There is a
possibility that there are no output reading drifts in the sensor
net, yet there may still be some sensors exhibiting parameter
errors, for example, overheating due to power consumption.
Apparently, this behavior is undesirable as it may lead to ex-
haustion of the sensors power source, or breakdown due to
overheating. We now address the problem of such power or
heating type of sensor errors while their readings and other
functions are not impaired. Before discussing approaches to
solve this problem, the following questions need to be settled.
a) Can a sensor measure its own heat? b) can two sensors
measure the heat of one another? c) is the sensor’s ability to
measure heat impaired by its overheating condition?

The first two questions are raised because the sensor net may
have been designed to measure certain external physical pa-
rameters, thus the above heat measuring is additional capabil-
ity to be embedded in the sensors. The answer to the third
question is not clear.

Our first approach to this problem is to assume that sensor
measuring capabilities are available and not impaired by over-
heating. Then, this problem can be solved by adaptation of
the techniques used in Procedures 1, 2 and 3 for normal distri-
butions of the sensor heatings. These procedures will identify
the overheated sensors from their normal heating distribution.
One difference here is that we would not expect any “under-
heated” sensors hence the distribution statistics o and e should
be carefully adjusted. The problem is more difficult if there
are both heat and heat measurement errors. This problem may
be very difficult to solve if the sensors can only measure their
own heat and then “lie” about their readings. However, it may
be possible to solve this problem if we assume that the sen-
sors have the capability to measure the heat of one another. it
will be necessary then to find a method that can filter out the
erroneous readings.

Note, if we assume the availability of the monitor sensors
discussed earlier, then the heat error problem can be addressed
differently by exploiting the monitors. Assuming that the
monitors can read the heat of the other sensors, the problem
can be formulated and solved by a similar technique discussed
earlier. Of course, the monitor sensors will need to be more
robust in their design fabrication properties.

In conclusion, this work provides a calibration methodol-
ogy for embedded or dense sensor nets to address error read-
ings due to sensor degradations. Our approach uses distributed
techniques, driven by collaborating nodes, to discover erro-
neous sensors. This investigation provides a simulator frame-
work for sensor net drift calibration setups.
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