
Trustworthy Computing in a Multi-Core System Using Distributed Scheduling

D. McIntyre
Cleveland State University

Computer & Information Science

Cleveland, Ohio 44106, USA

d.mcintyre@csuohio.edu

F. Wolff, C. Papachristou, S. Bhunia
Case Western Reserve University

Electrical Engineering and Computer Science

Cleveland, Ohio 44106, USA

{fxw12,cap2,skb21}@case.edu

Abstract– Hardware Trust is an emerging problem in semiconduc-

tor integrated circuit (IC) security due to widespread outsourcing

and the stealthy nature of hardware Trojans. Conventional post-

manufacturing testing, test generation algorithms and test coverage

metrics cannot be readily extended to hardware Trojan detection.

As a result there is a need to develop approaches that will en-

sure trusted in-field operation of ICs, and more generally trust in

computing. We present a distributed software scheduling prototype,

TADS (Trojan Aware Distributed Scheduling), to achieve a Trojan-

activation tolerant trustworthy computing system in a multi-core

processor potentially containing hardware Trojans. TADS is designed

to be transparent to applications and can run on general purpose

multicore PEs without modifications to the operating system or

underlying hardware. TADS can, with high confidence, continue to

correctly execute its specified queue of job subtasks in the presence of

hardware Trojans in the multi-core PEs while learning the individual

trustworthiness of the individual PEs. Specially crafted self-checking

subtasks called bounty hunters are introduced to accelerate PE

trust learning. Also, by learning and maintaining individual PE

trustworthiness, the scheduler is able to achieve Trojan containment

by scheduling subsequent job subtasks to PEs with high learned trust.

I. INTRODUCTION

An issue has emerged in the trustworthiness of computing due

to widespread outsourcing of the IC manufacturing processes to

untrusted foundries in order to reduce cost. An adversary can poten-

tially tamper a design in these fabrication facilities by the insertion

of Hardware Trojans a maliciously inserted circuit which can be

triggered under rare conditions and cause an error in the normal

functionality of the original circuit [1], [2], [3]. With the rapid

growth and complexity of ICs, a Trojan can be small enough to

evade detection through traditional manufacturing tests [4], [5], [6].

These small Trojans are limited to flipping a few bits in the processor

circuitry: arithmetic, instruction control logic, memory access control

or bus logic. The Trojan in order to be clandestine, is triggered by a

rare event or condition in the processors circuitry. The triggering

is based on monitoring a few rare combination of signals in the

processor circuitry. The rare event is crucial, otherwise it would

be caught early during manufacturing test. Complex Trojans which

match the sophistication of software Trojans will be detected at

manufacturing test time, i.e. checking a login password, because the

circuitry will occupy a large circuit area and consume additional

power beyond manufacturing specifications and be caught early.

Furthermore, the small Trojan can be time delayed, so that the

destructive payload after triggering occurs many clock cycles later.

The Trojan is randomly inserted in a few processor chips in order to

further evade possible detection during manufacturing test time and

when detected in field operation will appear as a random fault. This

makes it difficult for detection by standard manufacturing sampling

techniques or reverse engineering [7], [8].

Finally, the malicious Trojan circuitry is aware of fault tolerant

logic in the processor, such as parity, error correction, triple modular

redundancy majority-voting and encryption logic. The adversary has

access to the processor layout at manufacturing and the Trojan

temporarily deactivates the fault tolerant logic to avoid being detected

or deliver the payload.

Due to widespread outsourcing and the stealthy nature of hardware

Trojans there is a real need to develop approaches that will ensure

trusted in-field operation of integrated circuits, and more generally

bottom-line trust in computing. In particular, for applications with

high trust computing requirements, measures must be taken to deal

with ICs that potentially contain undetected malicious hardware

during in-field use.

The advent of multi-core processing suggests its use in allowing

parallel execution of the same functionality in order to verify cor-

rectness of results. Multi-core systems offer the additional benefit of

concurrent redundancy so that as trust detection among the various

cores are discovered, distributed software scheduling algorithms can

be used to avoid low-trust cores. We use the multi-core platform

in this paper, to propose a distributed software methodology, TADS

(Trojan Aware Distributed Scheduling) to achieve a Trojan-aware

trustworthy computing system in a multi-core system potentially

containing hardware Trojans. We focus on the detection of faulty

results arising from the activation of hardware Trojans and the high

confidence subsequent computation of correct results.

We present a distributed scheduling prototype that can, with high

confidence, continue to correctly perform its queue of general-

purpose job subtasks in the potential presence of hardware Trojans in

the multi-core PEs. Each PE contains identical job subtask scheduler

code capable of managing subtask variant execution within the

PE, including (if the PE is currently busy) flow of the subtask

to a neighboring PE, variant result comparisons, and passing of

correctly verified subtask results to output PEs of the multi-core.

The distributed scheduler accomplishes the controlled scheduling

and execution of variants of each subtask on different PEs and the

subsequent comparison of results. When the results differ (a Trojan

or transient fault has been detected), fault recovery is achieved by the

scheduling of additional subtask variant executions and subsequent

comparisons. By this process, the scheduler finally a) determines

and maintains (learns) trust information in PEs that activated a

Trojan, and b) determines with high confidence the correct value

of the subtask and directs the result to output PEs. By learning

and maintaining individual PE trustworthiness, the scheduler can

achieve fault containment by scheduling subsequent job subtasks to

PEs with high learned trust. TADS is a bottom-line approach that

continues to execute subtask variants until result agreement is reached

and therefore a high-confidence correct value is computed. Also the

reason for the error (Trojan or transient fault) does not stop TADS

from determining the correct value. However, we conservatively

attribute each transient fault on a PE to be a Trojan (false-positive) in

our multi-core learning process. Distinguishing Trojan from transient

errors appears to be extremely difficult and until such work is done

our conservative approach seems best.

Our proposed methodology is conceptually similar to approaches

used in fault-tolerant systems [9], [10], [11]. However Trojans, unlike

transient faults, are built into the logic of the multi-core, and can

211978-1-4244-7723-4/$26.00 c©2010 IEEE

generate errors by circumventing detection logic. Also the existence

of Trojans when detected can be learned (stored) and used by

TADS to improve future scheduling of subtasks to PEs to achieve

Trojan aware scheduling. Typically, reliable systems employ hardware

techniques to address soft-errors, whereas TADS is a distributed

software scheduler that bottom-line detects run-time errors (caused

by either Trojans or transient errors) and runs on a general-purpose

multi-core without modifications to either the operating system or

underlying hardware.

A. Variants

TADS is based upon the scheduling and execution of two func-

tionally equivalent variants of a subtask in two different PEs and the

subsequent comparison of the results to determine hardware trust.

The goal in producing a subtask variant is to produce a different

variant code of the same subtask which exercises another different

PE circuitry sufficiently differently that the likelihood of the original

variant executing the same Trojan is extremely unlikely. Although

the PEs may be heterogeneous, it is possible that they are identical.

Variants can then be used to detect Trojans in identical PEs. A subtask

variant can be any perturbation of the subtask that is functionally

equivalent, i.e. for the same inputs produces the same outputs.

Variants can be obtained by different instruction mixes obtained by

combining both different instructions and different operands. For

example, arithmetic subtract instruction (i.e. A−B) can be replaced

with non-subtract instructions, i.e. A + negate(B).

B. Distributed Scheduler

The following is the rational behind the use of subtask variants in a

multicore environment. See [12] for a more complete discussion. The

property of rare Trojan activation suggests the unlikelihood of two

functionally equivalent variant processes A and B, say, of a subtask

both triggering the same Trojan. Therefore when two binary variants

of a subtask are simultaneously executed on two different multicore

PEs PEA and PEB, say, and their computed values VA and VB agree,

it is highly unlikely that both executed the same Trojan (or different

Trojan) and as a result obtained the same result (Fig. 1b).

A A

(b)

B

(a)

B

A

C

(d) D

B

A

(c)

C

Figure 1. Example of placement of subtask variants

Thus it can be concluded with high confidence that VA = VB is

the correct value of the subtask and its value can be sent to the

output PEs. Also if their computed values disagree, it is known with

certainty that at least one of either PEA or PEB contained a Trojan

(i.e. it is known with certainty that a Trojan has been detected). If

they disagree, then the next step is to determine which of the PEs

(or if both) contained a Trojan and reduce the trust level of the PE

containing the Trojan. This can be accomplished by repeating the

process and running an additional variant, C, say of the subtask (Fig.

1c). Then if VC = VA (similar argument if VC = VB) then again it is

highly unlikely that both variants C and A executed the same Trojan

(or different Trojans) and as a result obtained the same result. Thus

it is determined with high confidence, that VC = VA is the correct

value of the subtask and its value can be sent to the output PEs. Also

if VC is not equal to either VB or VA then it is known with certainty

that at least two of the three PEs (PEA, PEB, PEC) contained Trojans

(this occurrence of two Trojans being activated for two variants of the

same subtask would be extremely rare). It would be even rarer for all

three PEs to contain Trojans. Clearly this process can theoretically be

repeated several times to ultimately determine the PEs that contain

Trojans and as a result adjust their trust levels (Fig. 1d). Of course

the likelihood of having to repeat this process beyond the initial two

variants A and B is almost zero. In reality, to have to repeat the

process beyond variants A, B, and C will likely never happen. It also

should be noted that eventually, frequently using only two variants,

the variant execution process must end and a correct value for the

subtask with high confidence computed.

C. Bounty Hunter

An accelerator was added to TADS to proactively detect hardware

Trojans during in-field use at run time. Carefully crafted subtasks

were designed to execute on PEs during idle time to ferret out

existing Trojans. Such subtasks must be specially crafted to exercise

the circuitry of a PE in an effort to both trigger a Trojan and

then detect its existence. We call such independent special Trojan-

searching subtasks bounty hunters. The ability of a bounty hunter

subtask to detect a Trojan requires the subtask to know its correct

values and after executing on any PE, to check the computed values

against these known values (a simple example, though not nearly

explorative enough might be a sorting algorithm with known input).

If the values differ the bounty hunter would have detected a Trojan

and as a result would reduce the trust of the PE.

II. SIMULATION RESULTS

A java program was written to simulate trust determination and

subtask scheduling. A combination of three jobs S15 with 15 sub-

tasks, and two example DFGs, with 33 (DFG33) and 51 (DFG51)

subtasks, respectively, generated by a random task graph generator

were run all together on the three PE array sizes. PE array sizes of

4×4, 8×8 and 16×16 were simulated. Trojans were distributed as

follows in the various PE arrays as indicated in Table I. We purposely

did not randomly distribute the Trojans among the PEs in order to

cause the maximum amount of Trojan activation in the system. For

example, placing Trojans in rows 1 and n − 1 of the n × n PE

array means that a subtask read by a PE in row 0 will (if it is busy)

necessarily result in passing the subtask to either a row 1 or row

n-1 neighboring PE which will contain a Trojan. Also, to further

accentuate Trojan activation, the frequency of Trojan activation was

set to 100% meaning that every time a subtask was executed on a

PE containing a Trojan, the Trojan was activated causing incorrect

results.

Table I
LOCATION OF INFECTED TROJANS

n× n Trojan Distribution within the PE Array

4× 4 All PEs in rows 1 and 3 contain Trojans

8× 8 All PEs in rows 1 and 7 contain Trojans

16× 16 All PEs in rows 1 and 15 contain Trojans

To demonstrate the effectiveness of TADS in learning PE trust

and using the trust information to better schedule subsequent tasks

to PEs with higher trust levels we simulated a slightly different

version, TU (Trojan Unaware) which did not use this extra trust

212 2010 IEEE 16th International On-Line Testing Symposium

information. As a result TU will occasionally schedule subtasks to

PEs whose trust is low whereas TADS will use known PE trust levels

to avoid such assignments. Both versions used variants to detect

the existence of Trojan activation and did any necessary additional

scheduling of variants to finally correctly compute subtask values

with high confidence. As a benchmark, we also ran a simple no-

variant scheduler (NV), that did not do any execution of variants, trust

determination, or Trojan avoidance. This scheduler merely routed

subtasks to free PEs where they are executed (without knowing

whether or not any Trojans were triggered). While this scheduler

executed subtasks reasonably quickly (as there are no variants) there

was no determination of validity of results and no attempts to correct

them. Additionally, if there were any Trojans in the multi-core, the

trustworthiness of the NV scheduler would diminish to the point

where the system would become useless. Table II shows the time

for completion of job S15 using TU, TADS and NV scheduling

for various array sizes. The TU and TADS schedulers computed

the correct values of all submitted jobs successfully despite frequent

Trojan activation. TADS was run on each of the three pristine multi-

cores (before bounty hunters were run). Then each of the n× n PE

multi-cores was flooded with 3n bounty hunters causing PE trusts to

be learned. Subsequently TADS was run on the multi-cores after

trust was learned by running the bounty hunters. Comparing the

results in Tables II it is clear that significant reductions of 30% in

job completion times were achieved by TADS scheduling over TU

scheduling since TU more often routed subtasks to PEs containing

Trojans necessitating the execution of further variants. As expected

the benchmark NV scheduler completion time was only 59 time

cycles for all PE array sizes, 40% faster than schedulers TU and

TADS. However the actual values computed for all jobs by NV were

also incorrect and Trojans were not detected.

Table II
S15 JOB SCHEDULING

PE
Array

Size

Job Completion Times

TU
Unaware

TA (Trojan Aware)

Before BH/After BH/NV

4× 4 102 123 / 84 / 59

8× 8 102 123 / 86 / 59

16× 16 102 178 / 86 / 59

A combination of three jobs S15 with 15 subtasks, and two exam-

ple DFGs, with 33 (DFG33) and 51 (DFG51) subtasks, respectively,

generated by a random task graph generator were run all together

on the three PE array sizes. Again, TADS was run both before,

and after the bounty hunters were run. Table III illustrates TU,

TADS and NV scheduling for the combination of three jobs. Again

there is a significant decrease in job completion times (sometimes

as large as 40%) over TU when TADS is used. Both schedulers

TA and TU produced values that were correct with high confidence.

Again as expected the benchmark NV scheduler completion time was

significantly less than schedulers TU and TADS (ranging between 1

and 3 times faster) for all PE array sizes. However the actual values

computed for all jobs by NV were also incorrect and Trojans were

not detected.

III. CONCLUSIONS

We have presented a Trojan aware distributed scheduler prototype,

TADS, that achieves trustworthy computing in a multi-core system

potentially containing hardware Trojans. TADS is transparent to the

applications running, and can run on general-purpose multi-core

PEs without any modifications to either the operating system or

underlying hardware. Also, by learning and maintaining individual

Table III
COMBINATION JOB SCHEDULING

PE
Array

size

Job S15
Completion

Time

Job DFG51
Completion

Time

Job DFG33
Completion

Time

TU

4× 4 294 508 493

8× 8 204 350 336

16× 16 204 368 359

TADS

4× 4 198 / 176 / 71 336 / 316 / 121 260 / 253 / 114

8× 8 140 / 93 / 59 218 / 172 / 111 188 / 166 / 109

16× 16 158 / 90 / 59 211 / 169 / 108 232 / 154 / 107

PE trustworthiness, TADS is able to achieve Trojan containment by

scheduling subsequent job subtasks to PEs with high learned trust.

Simulation results show that TADS can be an extremely effective

software approach to Trustworthy computing in the presence of

Hardware Trojans. However, due to the significant cost of variant

management, TADS is primarily useful for those applications that

require high trust computing in an age where Hardware Trust in ICs

is becoming problematic, and do not have a real time component, or

where absolute performance or overhead issues of area/power are not

important. High confidence computing in multi-core environments

can be achieved using distributed scheduling through subtask vari-

ant management. Unlike traditional fault tolerant variant techniques

which focus on efficiently identifying transient errors, our approach

identifies and locates persistent hardware Trojans in PEs and uses

the learned PE trust to efficiently schedule future subtasks for Trojan

avoidance.

REFERENCES

[1] J. Markoff, “Old trick threatens the newest weapons,” New York Times,

Tuesday, October 27, section D1, pp. 1,4, 2009.
[2] P. Marks, “Hardware trojans could sabotage microchips from within,”

New Scientist, vol. 203, pp. 5–6, July 2009.
[3] S. Adee, “The hunt for the kill switch,” IEEE Spectrum, pp. 34–39, May

2008.
[4] F. Wolff, C. Papachristou, S. Bhunia, and R. Chakraborty, “Towards

trojan-free trusted ics: problem analysis and detection scheme,” Design,

Automation, and Test in Europe (DATE’08), pp. 1362–1365, Mar. 2008.
[5] R. Rad, J. Plusquellic, and M. Tehranipoor, “A sensitivity analysis

of power signal methods for detecting hardware trojans under real
process and environmental conditions,” IEEE Trans. on Very Large Scale

Integration (VLSI) Systems, vol. PP, no. 99, pp. 1–1, Oct. 2009.
[6] D. Rai and J. Lach, “Performance of delay-based trojan detection

techniques under parameter variations,” pp. 58–65, july 2009.
[7] R. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,

“Mero: A statistical approach for hardware trojan detection,” 11th In-

ternational Workshop Cryptographic Hardware and Embedded Systems

(CHES’09). Lecture Notes in Computer Science 5747 (Springer), Sept.
2009.

[8] J. Kumagai, “Chip detectives,” IEEE Spectrum, vol. 37, no. 11, pp. 43–
49, Nov. 2000.

[9] Y. Ma and H. Shou, “Efficient transient-fault tolerance for multithreaded
processors using dual-thread execution,” Intl. Conf. on Computer Design

(ICCD’06), pp. 120–126, Oct. 2006.
[10] P. M. Wells, K. Chakraborty, and G. S. Sohi, “Adapting to intermittent

faults in multicore systems,” in ASPLOS XIII: Proceedings of the

13th international conference on Architectural support for programming

languages and operating systems, Mar. 2008, pp. 255–264.
[11] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, “Swift:

software implemented fault tolerance,” IEEE Intl. Symp. on Code Gen-

eration and Optimization (CGO’05), pp. 243–254, Mar. 2005.
[12] D. McIntyre, F. Wolff, C. Papachristou, S. Bhunia, and D. Weyer, “Dy-

namic evaluation of hardware trust,” 2nd IEEE International Workshop

on Hardware-Oriented Security and Trust (HOST’09), pp. 20–27, July
2009.

2010 IEEE 16th International On-Line Testing Symposium 213

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

