
Dynamic Cache Tuning for Efficient Memory Based Computing in
Multicore Architectures

Hadi Hajimiri, Prabhat Mishra
CISE, University of Florida, Gainesville, USA

{hadi, prabhat}@cise.ufl.edu

Swarup Bhunia
EECS, Case Western Reserve University, Cleveland, USA

skb21@case.edu

Abstract—Memory-based computing (MBC) is a promising ap-
proach to improve overall system reliability when few functional
units are defective or unreliable under process-induced or thermal
variations. A major challenge in using MBC for reliability improve-
ment is that it can introduce significant energy and performance
overhead. In this paper, we present an efficient dynamic cache
reconfiguration and partitioning technique to improve performance
and energy efficiency in MBC-enabled reliable multicore systems. We
use genetic algorithm to search effectively in a large and complex
design space. Experimental results demonstrate that the proposed
cache reconfiguration and partitioning approach can significantly
improve both performance and energy efficiency for on-demand
memory based computing without sacrificing reliability.

I. INTRODUCTION

Ensuring long-term reliability is an essential goal for al-

l microprocessor manufacturers. With device miniaturization,

design and process error margins are shrinking. Increasing

process-induced variations and high defect rate in nanometer

regime lead to reduced yield [1]. Process variation affects

the propagation delay in CMOS circuits, which may lead to

delay failures. In Static Random Access Memory (SRAM) these

variations may cause data retention or read/write failures [8].

Existing approaches address reliability concerns during design

time or by post-silicon correction and compensation solutions.

Increasing reliability using redundant functional units at design

time places a significant permanent area/energy overhead on all

manufactured chips in their entire lifetime.

Memory-based computing (MBC) has been shown to be

a promising alternative to improve system reliability in the

presence of both manufacturing defects and parametric (process

or thermal-induced) failures. It assumes that one or more logic

units can be nonfunctional while on-chip memory is functional.

Although memory is also prone to errors, it is easy to han-

dle failures using error correcting code (ECC) based protec-

tion (soft memory errors), suitable redundancy, and remapping

techniques [1] (parametric failures). Unfortunately, such low-

overhead methods are not suitable for handling defects in

processor logic circuits. MBC is promising to address reliability

concerns in functional units with significantly less area overhead

[15] (only 9.5% compared to duplication based redundancy

methods). Existing studies have demonstrated the utility of MBC

in both single-core [15] and multicore [3] architectures. The

existing approaches have two major limitations. First, the cache

area limitation was not considered as a constraint in system

design and the study assumed the presence of large caches.

Storing lookup tables for MBC may need huge storage capacity.

For example, authors in [15] used large dedicated caches in

This work was partially supported by NSF grants CNS-0915376, CCF-
0964514 and ECCS-1002237.

their setup in order to lower performance overhead. Second,

allocating cache space to MBC lookup tables can result in

significant performance/energy overhead. For example, Fig. 1

shows that improving reliability by using MBC slows down

performance significantly when we poorly choose the MBC L2

cache usage for applu benchmark leading to a similar increase

in cache subsystem energy consumption1. In this example we

used an 8-way associative L2 cache and restricted the L2 cache

ways accessible by the application from 1 to 8.

Fig. 1. The impact of reduced available cache for instruction/data on
performance for benchmark applu. The remaining is used by MBC.

Dynamic cache reconfiguration (DCR) is widely known as

one of the most effective techniques for cache energy optimiza-

tion [2]. By tuning the cache configuration at runtime, we can

satisfy data and instruction memory access behavior as well as

MBC requirements of different applications so that significant

amount of energy savings can be achieved without violating

deadline constraints. Cache partitioning (CP) is another promis-

ing approach to improve performance and energy consumption.

DCR and CP are promising techniques that can be used to

alleviate the performance/energy overhead. However, there are

several challenges. It is difficult to determine a profitable portion

of cache that could be set aside for MBC. Increasing MBC cache

space improves MBC performance while reduces the available

space for instruction and data and may decrease the overall

performance. We need to determine a profitable partitioning

between instruction/data cache and MBC cache. When MBC

supports many operations it is a major challenge to find the size

of profitable dedicated space for each supported operation as the

number of possible solutions increases exponentially.

In this paper, we present an energy and performance-aware

dynamic cache reconfiguration and partitioning technique for

improving reliability in multicore embedded systems. We devel-

oped an efficient genetic algorithm to utilize DCR and CP tech-

1Performance overhead (in percentage) is calculated by ((execution time of
the application using MBC)/(execution time of the application without MBC)-
1)x100

2013 26th International Conference on VLSI Design and the 12th International Conference on Embedded Systems

1063-9667/13 $26.00 © 2013 IEEE

DOI 10.1109/VLSID.2013.161

49

2013 26th International Conference on VLSI Design and the 12th International Conference on Embedded Systems

1063-9667/13 $26.00 © 2013 IEEE

DOI 10.1109/VLSID.2013.161

49

niques to find beneficial IL1/DL1 cache configurations as well

as L1/L2 cache partition factors for each MBC operation and

L2 instruction/data partition factors. Our experimental results

demonstrate that our approach can significantly improve both

performance and energy efficiency for on-demand computing in

memory in the presence of deadline constraints.

The rest of the paper is organized as follows. Section II

describes related research activities. Section III provides an

overview of our memory based computation framework along

with DCR and CP. Section IV describes the proposed genetic

algorithm for reliability and energy improvement using DCR

and CP. Section V presents the experimental results. Finally,

Section VI concludes the paper.

II. RELATED WORK

Reliable computation using unreliable components has been

actively studied for a long time. A wide variety of solutions

have been proposed over the years with the goal of dynamic

detection and correction of defects and variation-induced failures

[1][2], [6]. These techniques typically incur large performance

overhead or do not address manufacturing defects [6]. Paul et

al. [15] studied the utility of MBC for reliability improvement

in single-core architectures. MBC is recently introduced in

multicore architectures [3] where private MBC L1 caches were

used to store MBC look up tables in each core. The existing

approach has two major limitations. First, it assumed MBC

cache can be easily added to the design and did not consider

the associated area overhead (the use of large cache sizes) as

storing lookup tables for MBC may need huge storage capacity.

Second, allocating cache space to MBC lookup tables can result

in significant performance overhead due to reduced available

space for normal instruction and data. In this work, we have

efficiently used DCR and CP to address the above challenges.

While DCR and CP have been explored for performance and

energy improvement in various contexts [2][9], these approaches

cannot be applied to MBC due to the complexity of the design

space, as we discuss in Section IV. To the best of our knowledge

this is the first work that utilized DCR and cache partitioning

to enable efficient memory based computing.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Architecture Model

Fig. 2 shows an overview of MBC in a multicore framework.

Under normal circumstances, issue logic sends the instructions

to the respective functional units. However, if the functional unit

is not available (due to temperature stress), for certain types of

instructions (addition, multiplication, etc.), issue logic bypasses

the original functional unit for memory based computation. The

operands are used to form the effective physical address for

accessing the LUTs corresponding to the mapped function. The

LUTs are stored in main memory and most recent accesses are

cached for performance improvement [15].

In this paper, we investigate the role of cache partitioning in

improving performance without sacrificing reliability. We have

applied MBC to realize the functionality of the integer execution

unit (adder and multiplier) in each core. This architecture has

m cores each having it’s own private L1 data and instruction

Task 1

Issue

Core m
Task m

L2 Cache

M
B

C
 m

ul

M
B

C
 a

dd

Unified inst/data

Main Memory

M
B

C
 a

dd

M
B

C
 m

ul

DL1

IL1
MBC mul

MBC add

DL1

IL1
MBC mul

MBC add

...MBC

Issue

Core 1

Ex1 ExnEx2 ...MBC Ex1 ExnEx2

Fig. 2. Memory-based computing architecture in multicore systems

caches. All the cores share an L2 combined (instruction+data)

cache which is connected to main memory. Instruction and

data L1 caches are highly reconfigurable in terms of effective

capacity, line size and associativity. We adopt the underlying

reconfigurable cache architecture used in [2].

In our framework, both private L1 cache associated with

each core and the unified shared L2 cache can be partitioned.

Unlike traditional LRU replacement policy which implicitly

partitions each cache set on a demand basis, we use a way-

based partitioning in the shared cache and private MBC caches

[11]. For example, in Fig. 3, 5 ways are reserved for normal

instruction/data caches, whereas multiply and addition LUTs

(for MBC) received 1 and 2 ways, respectively. We refer the

number of ways assigned to each functionality as its partition
factor. For example, the L2 partition factor for instruction/data

cache in Fig. 3 is 5.

Unified inst/data MBC addMBC mul

8 ways in one cache set
Fig. 3. Way-based cache partitioning example: 5 ways for inst/data, 1-way of
MBC mul, and 2 ways for MBC add.

To support MBC, each core also has an L1-level MBC cache

that stores most frequently accessed entries of the LUTs. The

existing private L1 cache can be partitioned into two parts:

one part dedicated for MBC cache to store most frequently

used LUTs, and the other part will be used for conventional

data/instruction accesses. For example, in Fig. 2 core1 uses half

of private MBC cache for each of MBC operations whereas

core m needs less than half for mul operation (assigning more

to add operation). Similarly, shared L2 cache can be partitioned

to make space for MBC LUTs.

5050

B. Problem Formulation

In this work, we use static cache partitioning as applications

are known a priori. In other words, partition factors are pre-

determined during design time and remain the same throughout

the system execution. Dynamic profiling and cache partitioning

[9] requires online monitoring, runtime analysis and sophisti-

cated OS support, therefore, may not be feasible for a wide

variety of systems. Furthermore, embedded systems normally

have highly deterministic characteristics (e.g., task release time,

deadline, input set), which make off-line analysis most suitable.

By static profiling, we can potentially search much larger design

space and thus achieve better optimization results. We statically

profile each set of tasks and store the analysis results in a

profile table which is fully utilized to dynamically reconfigure

the cache hierarchy at runtime. In our framework we tune a

number of different cache parameters. Parameters for IL1 and

DL1 caches in each core are comprised of cache size, line

size, and associativity. The available cache ways in the unified

shared L2 cache are divided into partitions for normal inst/data

and different MBC operations. Similarly, we set aside part of

DL1 caches (in each core) for MBC operations. The system we

consider can be modeled as:

• A multicore processor with m cores P{c1, c2, ..., cm}.
• A list of operations supported by MBC F{o1, o2, ..., ol}
• A β-way associative shared L2 cache with way-based

partitioning enabled.

• A set of n independent tasks T {τ1, τ2, ..., τn} with a

common deadline D2.

Suppose we are given:

• A task mapping M : T → P in which tasks are mapped to

each core. Let ρk denote the number of tasks on core ck.

• An L1 cache configuration assignment R : CI , CD → T
in which one IL1 and one DL1 configuration are assigned

to each task. This mapping determines the associativity of

DL1 cache, namely αk for core ck, for each core and

delimits the maximum size of MBC cache that can be

stored in L1 MBC caches. The DL1 cache supports way-

based partitioning.

• Private L1 MBC cache partitioning scheme for each oper-

ation oi ∈ F :

Pp
Ck{f

p
O1,k, f

p
O2,k, ..., f

p
Ol,k, f

p
d,k}, ∀k ∈ [1,m]

in which core ck ∈ P allocates fp
Oi,k ways of the private

DL1 cache to MBC operation oi and fp
d,k ways to normal

data.

• Shared L2 cache partitioning scheme

Ps{fs
1 , f

s
2 , ..., f

s
l , f

s
ID} in which operation oi ∈ F is

allocated fs
i ways of the shared L2 cache and fs

ID is

assigned for instruction and data.

• Task τk,i ∈ T (ith task on core ck) has execution

time of tk,i(M,R,Pp,Ps). Let EL1(M,R,Pp,Ps) and

EL2(M,R,Pp,Ps) denote the total energy consumption of

all the L1 caches and the shared L2 cache, respectively.

2Our approach can be easily extended for individual deadlines.

Our goal is to find M,R,Pp, and Ps such that the overall energy

consumption of cache subsystem for the task set:

E = EL1(M,R,Pp,Ps) + EL2(M,R,Pp,Ps)

is minimized subject to:

Max(

ρk∑

i=1

tk,i(M,R,Pp,Ps)) ≤ D, ∀k ∈ [1,m], ∀i ∈ [1, ρk] (1)

l∑

i=1

fp
Oi,k = αk − fp

d,k; f
p
Oi,k ≥ 0, ∀k ∈ [1,m] (2)

l∑

i=1

fs
i = β − fs

ID; fs
i ≥ 0, ∀k ∈ [1,m] (3)

Equation (1) guarantees that all the tasks in T are finished by the

deadline D. Equation (2) ensures that the L1 partitioning Pp is

valid (l is the number of supported MBC operations). Equation

(3) guarantees that at most β ways of the shared L2 cache is

assigned for MBC.

IV. DYNAMIC CACHE RECONFIGURATION AND

PARTITIONING ALGORITHM

Our goal is to profile the entire task set T under all possible

combinations of Pp and Ps. Unfortunately, this exhaustive

exploration is not feasible due to its excessive simulation time

requirement (number of simulations can easily go over billions).

We have developed a genetic algorithm (GA) to overcome this

problem. Genetic algorithms transpose the notions of natural

evolution, such as inheritance, mutation, selection, and crossover

to the world of computers, and imitate natural evolution. They

constitute a class of search methods especially suited for solving

complex optimization and design problems [12]. Fig. 4 shows

the major steps of our genetic algorithm. In step 1, the initial

population is filled with individuals that are generally created

at random. In step 2, each individual in the current population

is evaluated using the fitness measure. Step 3 tests whether the

termination criteria is met. If so the best solution in the current

population is returned as our solution. If the termination criteria

is not satisfied a new population is formed by applying the

genetic operators in step 4. Each iteration is called generation

and is repeated until the termination criteria is satisfied. We

describe each of these steps in the following subsections with

illustrative examples.

Step 4: Create new population by reproduction,
crossover, and mutation

Step 1: Create initial random population

Step 2: Evaluate each member of the population

Final solution
Step 3:

Criteria satisfied?

No

Yes

Fig. 4. Overview of our genetic exploration algorithm

5151

A. Creation of Initial Random Population

In the first step, the initial population is filled with indi-

viduals that are randomly created. We initially choose ran-

dom acceptable values for IL1/DL1 cache configurations (size,

associativity, and line size) and partitioning factors (for M-

BC operation o1, ..., ol and inst/data) as well as L2 parti-

tioning factors. We create small number of initial solutions

(composing the initial population). For the ease of illustration

let’s assume the size of IL1 and DL1 are the only tunable

parameters in a singlecore system with only one task and

deadline of 10 milliseconds. Solutions are presented in tu-

ples as (IL1 size,DL1 size) in bytes. Each tuple is associated

with another tuple representing its execution time and energy

consumption, e.g. (IL1 size,DL1 size):(time,energy). Consider

(2048,4096), (4096,1024), and (2048,1024) are randomly gen-

erated in this step as the initial population.

B. Evaluation of Each Member in the Population

Our problem is a single-objective optimization problem in

which the selection is done proportional to the fitness function.

Each individual in the current population is evaluated using the

fitness measure. We define our fitness value based on:

Ψ = E : and Equations (1), (2), and (3) must hold

The lower fitness measure implies better solution (lower

energy consumption). In this step, we profile (using an architec-

tural simulator) each solution in the population and sort them

based on energy consumption. The exploration goal is to find

the solution with minimum energy consumption. We remove

solutions that do not satisfy the deadline from the current pop-

ulation. In our example (2048,4096):(9,20), (4096,1024):(8,24),

and (2048,1024):(10.5,18) are the outcome of this step. Solution

(2048,4096):(9,20) represents that with the assignment of 2048

and 4096 for IL1 and DL1 respectively the task takes the

execution time of 9 milliseconds and consumes 20 nano Joule.

As the execution time of solution (2048,1024):(10.5,18) is larger

than the deadline, this task will be removed from the current

population.

C. Termination Criteria Check

If the termination criteria is met, the best solution is returned.

We set the criteria to be a fixed number of generations (in this

work 20). Note that the solution can converge prior to this time

when the current population is the same as previous generation.

In this case, the best solution in the current generation is returned

as our final solution.

D. Generation of New Population

In this step, we create new candidates that are slightly

different from the individuals in the current population with

the aim of finding more energy efficient solutions. From the

current population individuals are selected based on the pre-

viously computed fitness values (lowest energy solutions). A

new population is formed by applying the genetic operators

(reproduction, crossover, and mutation) to these individuals.

The selected individuals are called parents and the resulting

individuals are referred as offspring. The genetic operators are

as follows:

Reproduction: A part of the new population can be created

by simply copying (without change) selected individuals from

the present population. This gives the possibility of survival for

already developed fit solutions, e.g. most energy efficient ones.

Crossover: New individuals are created as offspring of two

parents. One or more so-called crossover points are selected

(usually at random) within the chromosome of each parent,

at the same place in each. In this paper, we use uniform

crossover with the mixing ratio of 0.5 in which the offspring

has approximately half of the genes (IL1/DL1 configurations

and partitioning, L2 partitioning) from first parent and the other

half from second parent. The parts delimited by the crossover

points are then interchanged between the parents, as shown in

Fig. 5. The individuals resulting in this way are the offspring.

Crossover point

Parents:

Children:

(2048,4096)
(4096,1024)

(2048,1024)
(4096,4096)

Fig. 5. An example of one point crossover

Mutation: A new individual is created by making modifica-

tions to one selected individual. We increase/decrease IL1/DL1

cache size (e.g., multiply/divide by 2), associativity, and line

size. We also increase the number of the cache ways allocated to

a particular MBCoperation (or instruction/data) for both L1 and

L2. These cache ways are deducted from the ways assigned to

other operations so that Equation (2) and (3) hold and we have

a valid partitioning factor assignment. Fig. 6 shows mutation

of individuals in current population using our simple example.

Eight new individuals are generated in this step. In this figure,

green color represents a reduction in cache size and blue shows

cache enlargement. Note that the new solution will be ignored

if it is not valid. For example, since the smallest possible DL1

cache is 1024, the solution (2048,512) (underlined in the figure)

is skipped from the new population.

Parents:

Children:

(2048,4096) (4096,1024)

(2048,8192)(4096,4096)(1024,4096)(2048,2048)

(2048,2048)(8192,4096)(2048,4096)(2048,512)

Fig. 6. Genetic mutation

Applying every genetic operator to all individuals in the

current population leads to a huge number of new individuals

as the number of tunable parameters increases. This makes the

evaluation step very slow because a large number of simulations

would be needed. Therefore by using different probabilities for

applying these operators, we control the number of newly gener-

ated solutions in each iteration hence the speed of convergence.

V. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of the proposed approach, we

implemented the computation transfer mechanism in a widely

5252

TABLE I
MULTI-TASK BENCHMARK SETS.

2-Core 4-Core
Set 1 mgrid,lucas toast,lucas,vpr,parser
Set 2 vpr,qsort qsort,bitcount,swim,lucas
Set 3 toast,dijkstra lucas,mgrid,dijkstra,CRC32
Set 4 parser,toast dijkstra, applu, parser, mgrid
Set 5 bitcount,swim -
Set 6 toast,mgrid -

used multicore simulator, M5 [14]. We enhanced M5 to make the

required modifications in processor cores as well as in memory

hierarchy. We modified memory hierarchy to support cache

partitioning, to introduce L1 private MBC caches and shared L2

MBC cache. We configured the simulated system with a two-

core and four-core processor each of which runs at 500MHz.

The DerivO3CPU model [14] in M5 is used which represents

a detailed model of an out-of-order SMT-capable CPU which

stalls during cache accesses and memory response handling. A

128KB 16-way associative cache with line size of 32B is used

for L2 cache. For both IL1 and DL1 caches, we utilized the sizes

of 1 KB, 2 KB, 4 KB, and 8 KB, line sizes ranging from 16

bytes to 64 bytes, and associativity of 1-way, 2-way, 4-way, and

8-way. Since the reconfiguration of associativity is achieved by

way concatenation [2], 1KB L1 cache can only be direct-mapped

as three of the banks are shut down. 2KB cache can only be

configured to direct-mapped or 2-way associativity. Therefore,

there are 18 (=3+6+9) configuration candidates for L1 caches.

For comparison purposes, we used the base cache configuration

set to be a 4 KB, 2-way set associative cache with a 32-byte line

size, a common configuration that meets the average needs of

the studied benchmarks [2]. The memory size is set to 256MB.

The L1 cache, L2 cache and memory access latency are set to

2ns, 20ns and 200ns, respectively. The temperature threshold for

the integer execution unit was set at 100◦C.

We used benchmarks selected from MiBench [10] (bitcount,
CRC32, dijkstra, qsort, and toast) and SPEC CPU 2000 [4]

(applu, lucas, mgrid, parser, swim, and vpr). In order to make

the size of SPEC benchmarks comparable with MiBench, we

use reduced (but well verified) input sets from MinneSPEC [5].

Table I lists the task sets used in our experiments which are

combinations of the selected benchmarks. We choose 6 task sets

for 2-core and 4 task sets for 4-core scenarios, each core running

one benchmark. The task mapping is based on the rule that

the total execution time of each core is comparable. “Hotspot

2.0” tool [16] was used for estimating the temperature profile

of the integer ALU units. In order to estimate the die thermal

profile from Hotspot, power dissipation values of the individual

functional units were obtained from Wattch 1.0 [7] at regular

time intervals.

B. Results

Fig. 7 shows the yield improvement due to the proposed

activity migration scheme in case of manufacturing defects.

Performance overhead of more than 10% due to failing func-

tional unit is defined as chip failure. We considered a specific

implementation of integer and floating point units obtained from

[13] which consisted of 600K transistors. The cache memory

organized into 32x32 blocks with built-in redundancy of two

columns per block. A random distribution of a range of defect

rates were inserted into the transistors of both logic and memory

units. Some defects were tolerated using redundant columns

in memory. Performance degradation is obtained from cycle

accurate simulations using our benchmark sets. Region A in

Fig. 7 represents low defect rates. It can be observed that even

for low defect rates the percentage of chips that do not meet the

target performance using the baseline configuration (no MBC)

is as high as 60%. For these low defect rates, however, the

performance overhead for the MBC scheme was lower than the

10% tolerance (improvement of up to 60% in yield). As the

defect rate increases (Region B), more functional units fail and

less memory blocks are usable due to device failures. Hence,

yield for the proposed scheme also starts to degrade. However,

the chip failure rate is considerably better than the baseline

configuration. In case of high failure rates (Region C), the

MBC scheme also faces increased chip failure but still lower

than the baseline. Results in Fig. 7 confirms that the proposed

activity transfer method provides considerable benefit in yield

and reliability at the expense of small loss in performance.

0

20

40

60

80

100

0 5 10 15 20
Device Failure Probability (ppm)

C
hi

p
Fa

ilu
re

 P
ro

ba
bi

lit
y

(%
)

BaselineProposed Scheme

Failure rate
improved

Similar failure
rate but better

yield

Increased
range for

<1% failure

AA BB CC

Fig. 7. Variation in chip failure probability for different device failure
probabilities with and without the proposed approach.

Fig. 8 shows the energy improvements of our approach using

MBC in the presence of thermal stress in 2-core framework.

For comparison purposes we define a fixed sized MBC cache

option Fixed Half, a straightforward solution, where half of

available cache is used (128KB of L2 and 2KB of L1 caches)

for MBC for all task sets. As the search space in our problem

is extremely large we compare our approach to a known search

heuristic in which each cache parameter is optimized separately.

For example, we start with Fixed Half solution and replace

IL1 configuration for core 0 in this solution with all possible

configurations for IL1 and find the least energy one. Next, we

find the least energy IL1 for core 1. Similarly we discover best

IL1/DL1 configurations and partition factors for every core as

well as L2 partition factors separately. We refer this method

as local optimum in our comparison. Using local optimum
provides up to 20% (15% on average) energy savings compared

to Fixed Half. Performing local optimum for a 2-core scenario

requires 307 (=2x(18+18+45)+145) simulations. To make our

comparison fair we limit the number of generations in our

approach to 10 so that the total number of simulations would

be less than 300 (each generation creates 30 new solutions at

most). Our genetic algorithm achieves 26% energy savings on

5353

average (up to 41% for task set 6).

Fig. 8. Energy consumption for 2-core benchmark sets.

To investigate the speed of convergence in our approach

we extended the number of generations to 20. Energy con-

sumption of the most energy efficient solution found at each

generation normalized to Fixed Half is reported in Fig. 9. It

can be observed that for the majority of task sets the energy

consumption of the best solution at the 10th generation is very

close to the solution at generation 20. Extension to generation

20 will achieve 2.4% more energy savings (up to 4.7% for Set

5). Fig. 10 illustrates energy consumptions in 4-core scenario.

Applying local optimum in 4-core framework obtains 10%

energy reduction compared to Fixed Half. Utilizing genetic

algorithm produces 18% energy savings on average (up to 24%

using Set 4). We notice that the number of parameters (and thus

the search space) increases exponentially with the number of

cores making it more difficult to reduce energy consumption in

a 4-core framework.

Fig. 9. Energy consumption of the least energy solution at each generation for
2-core benchmark sets normalized to Fixed Half.

Fig. 10. Energy consumption for 4-core benchmark sets.

A closer look at performance overhead for different cache

partitioning factors confirms that choosing a predetermined fixed

partitioning factor for all benchmarks is not beneficial. Fig. 11

shows performance overhead for varying L2 instruction/data

partitioning factor where partitioning factor for L2 MBC, L1

instruction/data and MBC are fixed to half of the available space.

For instance it is beneficial to choose partitioning factor 7 for

vpr benchmark whereas partition factor 13 generated the lowest

overhead for patricia.

Fig. 11. Performance overhead of various partitioning factors for vpr , patricia,
and crc32 benchmark.

VI. CONCLUSION

We presented a novel energy/performance-aware cache parti-

tioning technique for improving reliability with memory based

computing. The basic idea is to use both private and shared

caches as reconfigurable computing resources. We developed

an efficient static profiling technique and cache partitioning

algorithm to find beneficial L1/L2 cache partition factors for

each MBC operation and L2 instruction/data partition factors.

Our approach can be effectively used to tolerate permanent man-

ufacturing defects in a processor core to improve functional yield

of multicore architectures. It can also be applied to temporarily

bypass the activity in functional units under time-dependent

local variations, thus providing dynamic thermal management

by activity migration. Our experimental results demonstrated

significant reduction in energy consumption (down to 74%

on average) when using MBC for reliability improvement in

multicore architectures.

REFERENCES

[1] A. Agarwal et al, “A Process-Tolerant Cache Architecture for Improved
Yield in Nanoscale Technologies”, IEEE Trans. on VLSI, 13,27-38, 2005.

[2] W. Wang et al., “Dynamic Cache Reconfiguration and Partitioning for
Energy Optimization in Real-Time Multicore Systems”, DAC, 2010.

[3] H. Hajimiri et al, “ Reliability Improvement in Multicore Architectures
Through Computing in Embedded Memory”, MWSCAS, 2011.

[4] Spec 2000 benchmarks [Online], http://www.spec.org/cpu/.
[5] A. KleinOsowski and D. Lilja, “Minnespec: A new spec benchmark work-

load for simulation-based computer architecture research”, CAL g(1), 2002.
[6] D. Ernst et al, “Razor: A Low-power Pipeline Based on Circuit-Level

Timing Speculation”, IEEE Micro, 2003.
[7] D. Brooks et al, “Wattch: A framework for architectural-level power

analysis and optimizations”, ISCA, 2000.
[8] S. Mukhopadhyay et al., “Modeling of Failure Probability and Statistical

Design of SRAM Array for Yield Enhancement in Nanoscaled CMOS”, T-
CAD, 2005.

[9] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches”, Micro, 2006.

[10] M. Guthaus et al., “Mibench: A free, commercially representative embed-
ded benchmark suite”, WWC, 2001.

[11] A. Settle et al., “A dynamically reconfigurable cache for multithreaded
processors”, JEC, Vol. 2, pp. 221-223, 2006.

[12] P. Bentley, “Evolutionary Design by Computers”, Morgan Kaufman-
n, 1999.

[13] “Digital open source hardware,”, [Online], http://opencores.org/.
[14] N. Binkert et al., The M5 simulator: Modeling networked systems”, IEEE

Micro, vol. 26, no. 4, pp. 52 -60, 2006.
[15] S. Paul and S. Bhunia, “Dynamic Transfer of Computation to Processor

Cache for Yield and Reliability Improvement”, IEEE TVLSI, 2011.
[16] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and

D. Tarjan, “Temperature-aware microarchitecture”, IEEE ISCA, 2003.

5454

