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Abstract—Bioimplantable microsystems, such as pacemaker
and cochlear implant, interface with internal body parts to
monitor and/or control their activity. These systems typically
record biological signals; analyze them in real time; and then
transmit them to outside world or take appropriate corrective
action. They require ultralow-power miniaturized electronics for
long-term reliable operation using on-board battery. Embedded
memory used to temporarily store the recorded data, forms an
integral and important part of these systems. In this paper,
we explore the design space and propose an optimal design of
embedded memory for implantable applications. First, we com-
pare a conventional super-threshold implementation of memory
with a sub-threshold design with respect to energy efficiency.
Next, we propose a super-threshold static random access memory
(SRAM) design operating at a frequency much higher than
the sampling frequency. We show that it can achieve very low
energy dissipation by taking advantage of extensive power gating.
Moreover, compared to a sub-threshold memory, it provides
significantly better area and higher robustness of operation, both
of which are important requirements for implantable systems. As
a case study, we consider a neural control system that records
and analyzes neural spikes. Simulation results for 45nm CMOS
process using pre-recorded neural data from sea-slug (Aplysia
californica) show that the proposed design can lead to significant
energy reduction, without compromising the robustness and
performance, compared to its sub-threshold counterparts.

I. INTRODUCTION

Miniaturized implantable systems provide an important in-

terface to internal body parts for interpreting and engineering

their activity [1]. Fig. 1(a) shows the interface of a com-

mon implantable system, namely a neural control system,

with a micro-electrode array, analog signal conditioning, and

transceiver electronics. The neural data recorded by the elec-

trodes are conditioned using analog circuits and converted

into digital signals, which go into the neural signal-processing

block shown in Fig. 1(b). It analyzes the digitized data,

compresses it, and extracts meaningful neural patterns. Finally,

it sends out recorded signals to an outside receiver through a

transmitter or provides stimulation in a closed loop framework

[2]. With an increase in the number of the recording electrodes,

the transmission bandwidth of the implanted telemetry device

becomes insufficient and power-hungry. For example, neural

recording from an array of 100 electrodes sampled at 25

KHz per channel with 10-bit precision yields an aggregate

data of 25Mbps, which is beyond the state-of-the-art wireless

telemetry. Therefore, it is extremely important to use on-

Fig. 1. (a) High-level functional block diagram for a typical neural interface
system. (b) The digital-signal-processing block, which analyzes spike patterns
on multichannel recorded data, constitutes a key part of the system [2].

chip electronics for data compression [3]. Furthermore, sig-

nal processing system is also responsible for recognition of

meaningful patterns in order to trigger appropriate corrective

actions through stimulation. To perform the data analysis from

multiple recording electrodes, there must be an on-chip data

storage to store the recorded signals and the detected events.

An effective approach for pattern recognition is based on

matching events detected from incoming signals with a “vo-

cabulary” [3] of signatures. Such a vocabulary can be created

dynamically by checking for new events and storing them in

it. In general, implantable systems used in diverse applications

would require several 100 kilo-bytes of memory for temporary

data storage. The memory access, leakage power, and area

largely affect the energy, reliability, and size of these systems.

Hence, it is of critical importance to achieve unltralow power,

robust, and area-efficient design of this memory.

In this paper, we explore the design choices for embedded

memory in implantable systems and propose an efficient

memory design for these systems exploiting the nature of the

recorded biological signals. As a case study, we consider a

neural recording framework that monitors the neuronal action

potentials or spikes. Outputs of multiple sensors go to a signal

processing hardware, which performs spike detection, wavelet

analysis based classification, and vocabulary construction.

Finally, the recorded signals are encoded in terms of alphabets

in the vocabulary and transmitted wirelessly to the outside

world using the built-in telemetry device [3]. In the following
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Fig. 2. Flow diagram of the vocabulary based neural signal processing
algorithm.

sections, we compare the energy efficiency and reliability

of super- and sub-threshold designs. We show that a super-

threshold design with appropriate choice of supply voltage,

device size, and threshold and also application of opportunistic

power gating can dramatically reduce the power dissipation.

In order to increase the opportunity for power gating in super-

threshold design, we increase the operating frequency, than the

one dictated by signal acquisition frequency. We observe that

at increased frequency, we can achieve comparable energy be-

havior while maintaining the area and robustness advantages,

compared to a sub-threshold design.

II. BACKGROUND AND MOTIVATION

The steps of vocabulary-based neural data compression are

shown in the flow diagram in Fig. 2. It takes the quantized

recorded neural data as input and gives the compressed neural

data as output. The encoded output is in form of packets con-

taining some wavelet information about the detected spikes. At

first the digital neural data is broken into fixed size overlapping

windows. Next wavelet analysis is done for each window

creating an ’approximation’ and ’detail’ coefficients. Then

spikes are identified using a thresholding step and are matched

with the existing set of spikes (referred as ‘alphabets’ [3])

in the database (referred as ’vocabulary’ [3]). Finally, output

packets are sent out reporting the location of the spike as

well as the corresponding alphabet [3]. The vocabulary process

contains two tasks: 1) matching the newly detected spike with

an existing set of spikes in the vocabulary; and 2) updating the

information in the vocabulary. In order to minimize the power

requirement, the new spike is compared in parallel with all the

old spikes stored in the vocabulary. The match is determined

by simply comparing the magnitudes with equality checker

hardware. If a match is found, then the memory address in

which the spike is stored is sent out as the location of the

spike.

To design the on-chip memory, the design parameters of

interest are: area, power, and robustness. Area is important

to ensure small form factor of the implant unit. Low power

TABLE I
ALTERNATIVE MEMORY ARCHITECTURES FOR DATA

STORAGE IN IMPLANTABLE SYSTEMS

Array of FFs Register File Embedded SRAM

Very Fast Very Fast Fast

Merits Ease of Design Small Area

Scalable

Large Area Power Hungry* More Design Effort**

Demerits Not Scalable Less Robust*

More Design Effort**

* Compared to SRAM

** Compared to FFs

dissipation is important to enable long-term operation using

the on-board battery and to prevent tissue damage due to heat

generation. Further, we need to make it robust against run-time

failures to ensure reliable long-term operation. Considering

these design parameters, we propose a design choice for on-

chip memory that achieves ultra low-power, area efficient, and

robust implementation using nanoscale devices.

III. DESIGN SPACE EXPLORATION

A. Alternative Memory Architectures

Several alternative architectures can be used to implement

memories: a) array of flip flops, b) register files, and c)

embedded SRAMs. Table I, highlights the merits and demerits

of each of these memory architectures in terms of area,

scalability, power, performance, robustness, and price. Array

of flip flops is not a good choice for an on-chip memory, since

it is not area-efficient and hence not suitable for scaling to

large storage size. Register file is not a good choice either as

it is normally used when multiple read and/or write operations

needs to be done at the same time. Considering the low record-

ing rate and sampling frequency in neural interface systems,

there is plenty of time, and there is no need to do multiple

simultaneous reads and/or writes. Even single-port register file

cannot be a good choice for on-chip memory as compared to

embedded SRAM, since they use large-signal sensing which

increases access power due to large voltage swing in bitlines,

compared to SRAM arrays that typically use small-signal

sensing. SRAMs are very area-efficient; easily scalable in

size and typically consume less power than register files for

the target size. Therefore, SRAMs can be the best choice of

architecture for on-chip memories in implantable applications.

The conventional super-threshold 6T cells are typically used

for designing SRAM arrays. However, when minimum power

consumption is the primary requirement and the operating

frequency is low (in 100KHz), sub-threshold memory designs

are very attractive. In sub-threshold design, in order to achieve

ultralow-power operation, supply voltage is reduced to below

the device threshold voltage. This significantly reduces power

at the cost of increased delay. However, it typically suffers

from huge area overhead and reduced reliability compared to

a super-threshold design. In the following sections we will

evaluate the sub-threshold and conventional super-threshold

designs, and propose techniques to reduce power in super-

threshold memory.
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Fig. 3. Timing diagram comparing execution of 66 cycles of read, compare, and update in sub-threshold and super-threshold modes.

TABLE II
AREA, DELAY, ENERGY, AND NOISE-MARGIN FOR A 4X4 SRAM ARRAY

IMPLEMENTED WITH 8T AND 10T SINGLE-ENDED CELLS

Cases Area Delay Energy (zJ) Noise Margin (mv)
μm2 (ns) dyn leak tot Read Write Hold

8T 1.12 128.2 0.005 8.691 8.696 156 122 156

10T 1.44 200.4 0.02 6.576 6.596 156 122 156

B. Sub-threshold Memory

Conventional 6T SRAM do not function reliably in the sub-

threshold regime because the ratio constraints for read stability

and writability cannot be guaranteed. Therefore, several alter-

native configuration SRAMs are considered for sub-threshold

operations [4] [5] [6] [7]. In this paper we have focused on

single-ended 8T [7] and 10T [6]. With area and power as two

important design parameters, we chose single-ended 8T and

10T because the former is comparatively smaller in area, and

the latter reduces leakage power significantly due to stacking

effect. The single-ended scheme in both cases is used for

improved stability, and it comes at the cost of a read bitline,

a read wordline, and two to four read transistors. 8T and 10T

SRAM cells have very similar architecture. However, each

one has some advantages over the other one. 8T is denser,

while 10T can reduce leakage power more due to the two

extra transistors in the read port. Although 8T and 10T can

operate at a lower voltage than 6T, but they are not as dense

as 6T.

In Table II, two 4x4 arrays based on 8T and 10T SRAM

cells are compared in terms of area, performance, energy, and

robustness at VDD of 400 mV. It has to be mentioned that the

delay measurement is based on a read operation, and the total

energy is based on the dynamic energy and leakage energy

dissipated during and after a read operation in a 100μs time

interval. Both 8T and 10T SRAM cells are designed using

high threshold transistors to reduce leakage [8]. They, however,

suffer from reduced reliability. At very low supply voltages,

they may experience functional failures due to increased delays

caused by environmental variations. Knowing that area is a

critical feature for implantable devices, for further simulations,

we chose 8T as the nominal SRAM cell for sub-threshold

design.

C. Super-threshold Memory

For super-threshold SRAM design we choose the conven-

tional 6T SRAM cell. The cell is designed using nearly

minimum-sized transistors to achieve high density. To reduce

the leakage, we use high threshold transistors in the cell. The

ratio between the pull down NMOS and the access transistor is

sized to be grater than 1.2 to keep a proper noise margin during

the read operation. Although the conventional 6T SRAM cell

does not work reliably at an ultra-low power supply, but it is

very dense, and provides better performance and robustness of

operation. As demonstrated in the timing diagram in Fig. 3, the

operations can be performed at very low voltage and frequency

in sub-threshold mode. In the other hand, they can also be

completed in a shorter time by operating at higher frequencies

in super-threshold mode, which leaves longer idle time for

more supply gating [2].

D. Power-Gating of Memory
Most of the subarrays in a large SRAM are not active at

any given time. This inactive periods are even more observable

in biomedical applications where the sampling rate is very

low (in hundreds of KHz), and the system is idle most of

the time. Supply-gating is a technique that can be used to

decrease static power consumption. During a memory access,

it turns on only the necessary subarrays and leaves the others

in idle/sleep mode to minimize leakage power. To apply the

gating technique, first we have to identify the idle subarrays in

which gating can be applied. In the design under consideration

the subarrays are corresponded to the rows of memory. Each

row stores the information of one neural spike. When a new

spike is detected, every single row in the memory is read and

compared with the newly detected spike, and finally the SRAM

gets updated if necessary. Therefore, at each time the row

which is being read and compared is in active mode, and the

rest of the rows are in sleep/idle mode and can be gated to

save leakage power.
During sleep mode, we gate the idle rows using sleep

transistors connected to each row, placed between GND and

GNDV. A sleep transistor permits GNDV to rise by a control

amount of voltage. The GNDV rise must be controlled so that

it doesn’t affect the cell’s state. The sleep current is set to a

level such that the rail-to-rail voltage across the transistors be-

comes equal to the minimum data retention voltage. When the

row is about to be accessed, the sleep transistor corresponded

to that row activates and connects the GNDV to GND. The

transition from sleep mode to active mode takes some time and

energy. In the design under consideration, the wake-up time

and wake-up energy have 21% and 0.7% delay and energy

overhead respectively.
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TABLE III
TIMING PARAMETERS USED FOR DETERMINATION OF CLOCK CYCLE FOR

A ‘GATED’ ARRAY

tread(ns) twrite(ns) tcomp(ns) tper(ns) tclock(ns)

0.72 0.6 0.35 0.89 1.61

In sub-threshold region, the rail-to-rail voltage is already

very low, and supply-gating cannot ensure reliable retention

of data. Therefore, we only applied supply-gating to super-

threshold design. Besides, gating can lead to unacceptable per-

formance degradation for sub-threshold memory. We selected

the optimal sub-threshold voltage to obtain acceptable memory

performance in our case study. We need to preform 64 read and

compare operations followed by a write operation for updating

the memory. All the operations have to be completed within

320 μs, before the next spike is ready. We need 65 cycles to

complete the read and compare operations in parallel. After

adding one cycle for write operation, we have 66 cycles that

need to be fit in the 320-μs time period. The length of the

clock cycle (tclock) can be represented as

tclock = max(tread, tcomp, twrite) + tper (1)

Where tread, tcomp, and twrite are the time required to

do a read, compare or a write operation, and tper is the

time required by the peripheral circuits like the decoder, the

precharge unit, and the sense amplifier. Table III shows these

timing parameters for a ‘Gated’ super-threshold design with a

sleep transistor of 3000nm and VDD of 1 V.

We can do all of the 66 operation cycles at 206 KHz

frequency and scale down the supply voltage to 200 mV. Here,

as a result of reducing the supply voltage the dynamic power is

reduced, and delay is increased, leaving less time for supply-

gating. In the next scenario, we can perform the operations at

a faster rate of, say, 620 MHz with a supply voltage of 1 V,

and then ”gate” the idle rows for the remainder of the 320-μs

period. In this case the leakage power is reduced at the cost

of a slight increase in dynamic power. The timing diagram for

the 66 cycles of the read-compare-write process in memory

shown in Fig. 3, demonstrates the increased opportunity for

power gating when operating at the super-threshold voltage at

high frequency as opposed to the sub-threshold operation at

ultra-low frequency.

As the frequency of operation increases, the active time

decreases while the sleep time increases. On the other hand,

the dynamic power increases but the leakage power does not

change. Since the leakage power is only reduced during the

sleep time, and the sleep time is increased, so more leakage

energy can be reduced due to applying ’gating’ technique for a

longer time. Therefore, as the frequency of operation increases,

the total energy of SRAM decreases.

IV. SIMULATION RESULTS

A. Simulation Setup

We consider a 64x80 SRAM array to explore the differences

between the super-threshold and the sub-threshold designs in

terms of energy, performance, area, and noise-margin. To de-

termine the size of the array, we considered 64 neural samples

TABLE IV
AREA, DELAY, ENERGY, AND NOISE-MARGIN FOR A 64X80 ARRAY

REALIZED WITH THE CONVENTIONAL 6T SUPER-THRESHOLD AND THE

SELECTED 8T SUB-THRESHOLD CELLS

Cases Area Delay Energy (pJ) Noise Margin (mv)
μm2 (ns) dyn leak tot Read Write Hold

6T 256 0.37 40.48 69.61 110.09 209 420 383

8T 358.4 226 6.82 16.25 23.07 156 122 156

which need to be stored, each sample has 8 coefficients, and

each coefficient is 10-bit wide. To design the SRAMs, we use

the conventional-6T and 8T SRAM cells for super-threshold

and sub-threshold designs respectively.

From the neural data recorded from the sea-slug (Aplysia

californica), it can be observed that spikes usually appear every

100ms. We consider a window of 64 samples. Considering the

sampling frequency of 10KHz, a new data sample for each

channel arrives every 100μs. Therefore, for a single-channel

recording system, we need to wait for 6.4ms (64 x 100μs)

to have a full window of samples. However, if we consider a

20-channel recording system with time-multiplexed operation,

data samples arrive every 5μs, and we only have to wait for

320μs (64 x 5μs). This is the time interval in which we have

to fit the 66 cycles of read-compare-write operations. The

simulations preformed for different VDDs show that the read-

delay dominates the write- and compare-delay, so it determines

the length of the operation cycle. The comparator used in

the simulations is an equality checker synthesized using the

Synopsis design compiler and the OSU 45-nm standard cell

library [9]. Simulations were performed in HSPICE for the

45-nm technology node [10]. For all the simulations the

temperature is considered to be 40◦C to simulate the body

temperature for the implantable device.

B. Evaluation of Alternative Implementations

We compare the super-threshold and sub-threshold designs

in terms of energy, performance, area, and noise-margin in

Table IV. It should be noted that the nominal supply voltage

for super-threshold and sub-threshold designs are considered

as 1 V and 400 mV, respectively. As shown in the table,

the leakage and dynamic energies are much smaller in sub-

threshold design due to the lower supply voltage. While the

energy decreases, delay and area increases significantly. We

can observe that the super-threshold design is about 611X

faster and 1.4X denser than its sub-threshold counterpart.

Super-threshold design is also more robust than the sub-

threshold design.

Supply-gating is applied to super-threshold design to save

leakage energy. The gating is implemented through an NMOS

sleep transistor which permits GND to rise by a controlled

amount during the sleep mode. In Table V, we have compared

the ‘NotGated’ and ‘Gated’ super-threshold SRAM arrays in

terms of energy, performance, area, and noise-margin. The

sleep transistor is considered to be 12X wider than the pull-

down NMOS in the 6T SRAM cell. As it can be observed in

Table V, supply gating has a huge effect on energy consump-

tion. While energy is significantly reduced due to stacking
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TABLE V
AREA, DELAY, ENERGY, AND NOISE-MARGIN VALUES FOR A 64X80 ARRAY

REALIZED WITH THE ‘NOTGATED’ AND ‘GATED’ SUPER-THRESHOLD

CELLS

Cases Area Delay Energy (pJ) Noise Margin (mv)
μm2 (ns) dyn leak tot Read Write Hold

NotGated Sup.th 256 0.37 40.48 69.61 110.09 209 420 383

Gated Sup.th 265.6 0.72 30.41 28.02 58.43 204 408 383

Fig. 4. (a) Area, (b) read noise-margin, (c) total energy, (d) delay, and (e)
EDP of the ‘Gated’ Super-threshold SRAM with sleep transistor size scaling.

effect, small overhead can be observed in terms of area, delay,

and noise-margin due to the imposed extra transistor per row.

From the results shown in the table, it can be derived that

supply-gating has significantly reduced the total energy by

47%, while it has increased the area and noise margin by only

3.6% and 2.4% respectively.

C. Case Study: Implantable Neural Interfaces

In this section, we investigate the proposed design solution

for embedded memories in the context of a neural interface

system. To implement supply-gating we consider only NMOS

sleep transistor to minimize the area overhead. To account for

the time required for the virtual ground node to discharge, the

sleep to active transition is triggered during the negative phase

of the clock cycle when the bitlines are getting charged, and

the SRAM is still in sleep mode. The energy consumption

overhead when the sleep transistor switches on/off was also

taken into account when computing the total energy.

The effect of sleep transistor scaling on area, read static

noise margin (SNM), energy consumption, delay, and energy

delay product (EDP) is shown in Fig. 4. The size of sleep

transistor is scaled from 0.25μm up to 5μm by steps of 0.25μm

which is the size of the pulldown NMOS in the 6T SRAM cell.

The maximum size of the sleep transistor is defined by the area

and energy constraints. As it can be observed in Fig. 4(a), the

Fig. 5. (a) Total energy, (b) delay, (c) EDP, and (d) read noise-margin of the
‘Gated’ and ‘NotGated’ super-threshold SRAM with supply voltage scaling.

area has an increasing trend as the sleep transistor is scaled

up. The area overhead due to sleep transistors ranges from

0.3% to 6% as compared to the ‘NotGated’ Super-threshold

design. Fig. 4(b) shows the effect of sleep transistor scaling

on read-SNM. As the size of the sleep transistor increases, the

read-SNM gets bigger and bigger and saturates at the end. It

has to be mentioned that since sleep transistor has more impact

on read-SNM rather than write-SNM or even hold-SNM, we

only considered the read-SNM as the deciding parameter to

choose the best sleep size. The effect of sleep transistor scaling

on total energy is plotted in Fig. 4(c). The increasing trend

shows that the smaller the size of the sleep transistor the

less the total energy. Fig. 4(d) shows a decreasing trend in

delay as the sleep transistor is scaled. Since we have a long

time interval to perform the vocabulary process, the operations

can be performed at slow rate without violating the timing

requirements. Hence we could choose a small sleep transistor

to save energy at the cost of delay overhead. However, it

should be noted that less delay overhead gives the opportunity

of performing the operations at a faster rate and leaving more

time for supply gating. EDP is widely used as a metric to

determine the effectiveness of voltage scaling. In Fig. 4(e), we

have plotted the effect of sleep transistor scaling on EDP. We

observe that EDP has a decreasing trend as the sleep transistor

is scaled. Evaluating all the plots, there is a point at which area

has only 3% overhead, read-SNM is almost at its maximum

value, and EDP is at one of its lowest values. This size point is

3000nm. At this point, energy is reduced up to 31%, and delay

is increased by less than 100% as compared to the ‘NotGated’

super-threshold design.

Considering 3000nm as the nominal width of the sleep tran-

sistor, we try to reduce the total energy by scaling the supply-

voltage down [11]. Fig. 5 shows the effect of supply-voltage

scaling on energy, delay, EDP, and read-SNM. Fig. 5(a) and

5(b), show that while energy decreases steadily with voltage

scaling, there is an overhead in terms of delay. Considering

the EDP plot in Fig. 5(c), there is an optimal voltage point

at which the EDP is minimized. This voltage point is 0.8 V,

which is used in our simulations as the optimal super-threshold
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Fig. 6. (a) Dynamic power, (b) leakage power, and (c) total energy of the
‘Gated’ and ‘NotGated’ super-threshold SRAM with frequency scaling.

supply-voltage. Fig. 5(d), shows a linear decrease in read-SNM

as the supply voltage is scaled. The read-SNM at the selected

nominal supply voltage is 154 mV which is still high enough

to assure the robustness of operations. It should be noted that

the minimum energy point [see Fig. 5(a)] has a much lower

supply voltage than the point with the minimum EDP (see

Fig. 5(c)). Taking 0.8 V as the nominal super-threshold supply-

voltage, we increased the idle time interval for supply gating

by increasing the operating frequency.

Fig. 6, shows the effect of frequency scaling on dynamic

power, leakage power, and total energy. The dynamic power

increases with frequency, whereas the leakage power is in-

dependent of frequency. The leakage power for a ‘Gated’

design is also much lower than for a ‘NotGated’ design.

These trends can be observed in Fig. 6(a) and 6(b). However,

as frequency increases, the active time decreases while the

idle time increases. Since the leakage power is reduced only

during the idle period, the total energy decreases considerably

for a ‘Gated’ design at high frequencies, as it is shown in

Fig. 6(c). It can also be observed that the total energy is

independent of frequency for a ‘NotGated’ design as no gating

technique is applied to reduce the leakage energy. As it is

shown in Fig. 6(c), the lowest total energy for the proposed

design is 33.72pJ which is achieved at the highest frequency

of operation 370MHz.

In Table VI, we compared the proposed ‘Gated’ super-

threshold design with the ‘NotGated’ super-threshold and sub-

threshold designs in terms of area, delay, total energy, and

read-SNM. Using the proposed technique we reduced the total

SRAM energy of the super-threshold design by 27% without a

huge impact on area and robustness. The area and read-SNM

for the proposed design are also better than the sub-threshold

counterpart by 35% and 12%, respectively.

V. CONCLUSION & FUTURE WORK

We have presented design space exploration for implement-

ing on-chip data storage in bioimplantable systems. Although

sub-threshold design appears to be the natural choice for hard-

ware implementation of the ultralow-power SRAM, we have

shown that a well-optimized super-threshold design, which

TABLE VI
COMPARISON OF TOTAL ENERGY, AREA, READ-SNM, AND DELAY AMONG

THE ‘NOTGATED’ SUPER-THRESHOLD, THE PROPOSED ‘GATED’
SUPER-THRESHOLD, AND SUB-THRESHOLD SRAM DESIGNS

Cases Area Delay Total Energy Read SNM
μm2 (ns) (pJ) (mV)

Sup.th NotGated 800 mV 256 0.65 46.01 156

Sup.th Gated 800 mV 265 1.45 33.72 154

Sub.th NotGated 400 mV 358 226 23.07 138

exploits the nature of the recorded signal, can achieve com-

parable energy efficiency while maintaining higher robustness

and smaller area. This is possible by judiciously employing

extensive supply gating in the design that leverages the speed

gap between fast super-threshold operation and slow signal-

acquisition frequency. We have shown that optimal choice

of device size, operating voltage, and frequency can greatly

minimize the power dissipation in the super-threshold design.

Future work will involve application of the design approach

to other implantable systems and hardware validation through

test chip fabrication and measurement.
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