
Energy-Efficient Hardware Acceleration through
Computing in the Memory

Somnath Paul
Intel Corporation

Hillsboro, OR, USA
Email: somnath.paul@intel.com

Robert Karam
Case Western Reserve Univ.

Cleveland, OH, USA
Email: robert.karam@case.edu

Swarup Bhunia
Case Western Reserve Univ.

Cleveland, OH, USA
Email: skb21@case.edu

Ruchir Puri
IBM Watson Research Center
Yorktown Heights, NY, USA

ruchir@us.ibm.com

Abstract—Energy-efficiency has emerged as a major barrier
to performance scalability for modern processors. We note that
significant part of processor’s energy requirement is contributed
by processor-memory communication. To address the energy
issue in processors, we propose a novel hardware accelerator
framework that transforms high-density memory array into a
configurable computing resource to accelerate variety of tasks
- both compute- and data-intensive. It exploits the block-based
architecture of nanoscale memory to create a spatially connected
array of lightweight processors, each of which uses a memory
block as its local memory. The proposed framework provides
some unique advantages for hardware acceleration compared
to conventional accelerators: 1) memory array provides large
set of parallel resources with high bandwidth, which can be
configured to perform computing in spatio/temporal manner
leading to dramatic reduction in processor-memory traffic; 2)
it brings the computing engine close to the data, thus drastically
minimizing the von Neumann bottleneck; 3) finally, it exploits the
advances in memory technologies and integration approaches e.g.
3D integration to achieve better technology scalability compared
to alternative reconfigurable accelerator platforms. Simulation
results for several data-intensive applications show that the
proposed computing approach provides significant improvement
in energy-efficiency compared to software while achieving signif-
icantly lower hardware overhead.

I. INTRODUCTION

In the nanometer technology regime, power has emerged
as the primary design constraint. Since technology scaling no
longer provides cubic reduction in energy following Dennard’s
scaling rules [2], attention has shifted to alternative approaches
to improve energy efficiency, namely, new algorithms, highly-
optimized accelerators, smarter hardware-software partitioning
and sophisticated power management techniques [1]. The
demand for improved energy efficiency is imposed by appli-
cations spanning diverse areas such as scientific computations,
web serving, multimedia storage, searching and character-
ization. Many of these applications are data-intensive [2],
primarily bound by off-chip input/output (IO) performance and
energy requirements. In the past decade, integrated graphics
processing units (GPU) and other on-chip accelerators have
largely addressed the compute energy for these applications
and embedded cache hierarchy has partially alleviated their
IO bottleneck.

However, as technology scales, scalability in energy-
efficiency remains a serious challenge for such applications.
There are primarily two major challenges. The first challenge

978-3-9815370-2-4/DATE14/ c©2014 EDAA

Fig. 1. Scaling trends for off-chip bandwidth and power suggest that a large
gap exists between the technology projections and system requirements [4].

arises from the fact that the power profile for the transistor
is not scaling as well as its integration density. It is therefore
unlikely that future energy-constrained over-provisioned sys-
tems (often referred to as “dark silicon” [3]) will be able to
meet the performance requirements for these emerging data-
intensive applications. The second challenge is posed by the
ever-increasing gap between on-chip memory and processor
frequencies and external data rates (refer to Fig. 1). Although
large embedded caches have addressed the IO bottleneck in the
past, they have already hit limits in hiding the off-chip access
latency. In this scenario, 3D integration has emerged as an ef-
fective approach to minimize the off-chip communication cost.
In such integrated systems, stacked monolithically integrated
dies communicate between themselves using through-silicon
vias (TSV). The result of this integration is improved power
consumption for dynamic random-access memory (DRAM).
However, as pointed out in [3], this technology will limit the
capacity of DRAM die per stack since each stack will need to
provide their own I/O pins. In addition, heat dissipation and
thermal-induced reliability concerns remain a major challenge
for 3-D IC design. In summary, increasing requirement of
back-and-forth data transfer between processor and memory,
referred to as Von Neumann bottleneck, has emerged not only
as a performance bottleneck but also as a limiter to energy-
scaling.

Contrary to the grim challenge of energy scaling faced by
conventional computing architectures, the field of non-volatile
memory research has seen unprecedented developments in
the past decade. While NAND Flash trends for increased
integration density remains on track, alternate non-CMOS non-
volatile memories have emerged and are now even being
commercialized. Some of these include phase change memory
(PCM) [5], resistive random-access memory (ReRAM) [6] and

Fig. 2. Trends for a) read/write bandwidth and b) storage capacity scaling
for NAND Flash and other emerging non-volatile memory technologies [1].

spin torque transfer random-access memory (STTRAM)[7]. As
evident in the trends captured in Fig. 2, these non-volatile
memories (NVM) achieve higher read/write bandwidth, in-
creased energy-efficiency and improved endurance compared
to NAND Flash at the overhead of reduced storage capacity.
As these novel NVM technologies improve over time, they
are being considered strong candidates for both stand-alone
and embedded applications. The feasibility of integrating per-
manent storage with computing technologies will undoubtedly
bring about a major paradigm shift. As the distinction between
compute and storage is blurred, the prospect of computing in
memory appears realistic.

The concept of in-memory computing has been proposed
in numerous earlier works [8, 9] in the context of computing
in the main memory. However, with the emergence of fast
and reliable non-volatile storage, recent in-memory compute
architectures have targeted these NVM technologies [10]. The
benefits of such architectures is particularly noteworthy for
pattern recognition, data mining and such analytic applications
which traditionally involve moving a large volume of data
through the memory hierarchy. In this work we review the pre-
vious approaches towards in-memory computing and describe
a memory-based MAlleable Hardware Accelerator (MAHA)
that implements a reconfigurable computing fabric with NAND
Flash memory to map data-intensive applications. This novel
spatio-temporal framework is implemented by instrumenting
the last-level non-volatile storage and therefore has minimal
impact to its integration density. In particular, the paper has
the following major contributions:
1. It presents MAHA, a truly in-NVM reconfigurable frame-
work. It describes in detail the hardware and software imple-
mentation of MAHA, which is realized through design changes
to non-volatile memory array organization. Modifications for
transforming the memory array into a reconfigurable comput-
ing resource are critically examined.
2. It presents an emulation framework which validates the
functional correctness of the MAHA framework. Results from
the emulation setup suggests the significant energy gains that
can be achieved through in-memory computing.

II. BACKGROUND & MOTIVATION

A. Related Work

Overcoming the memory wall has been a major emphasis
of alternate architectures that have gained popularity in recent
years. For these architectures (example GPU), many-threaded

Fig. 3. Energy and performance for a hybrid system with a host processor and off-
chip memory based hardware accelerator. a) Effective energy per operation in the hybrid
system with c=o=0.05 and g=0.7. Improvement in energy-efficiency (EDP) for the hybrid
system with: b) c=o=0.005; c) c=o=0.05; d) c=o=0.5.

execution is a common feature addressing the main memory
latency and bandwidth bottleneck. Although these architectures
address the performance bottleneck to a large extent, the
energy requirement for off-chip access is still taxing. The In-
telligent RAM (IRAM) [8] and Processing-in-Memory (PIM)
[9] projects have been forerunners for in-memory architectures
which attempt to alleviate this energy overhead. The idea
is to reduce the latency and energy of DRAM access by
placing processor or vector processing unit on the same chip
with DRAM. Emerging NVM technologies however hold the
promise of low-access times and fine-grained byte-level access,
as opposed to high-access latency for fixed-sized blocks with
thousands of bytes for today’s Flash technology. The proposed
MAHA framework is therefore designed to closely integrate
with emerging non-volatile storage and thus potentially offers
higher energy savings for data-intensive applications.

B. Motivation

Key application and system primitives can be leveraged to
determine whether an application will benefit from in-memory
acceleration.
A. Key Primitives: In order to compare between a software-
only solution and a hybrid system with off-chip in-memory
accelerator, we express the application characteristics and the
system configuration using a set of primitives as listed below:
1. g - fraction of total instructions with memory reference
(loads and stores).
2. f - fraction of total instructions transferred to an off-chip
compute engine.
3. c - fraction of instructions translated from host’s ISA to the
ISA for the off-chip compute framework. Note that loads and
stores can be partially removed during such a translation.
4. o - fraction of original instructions which result in an output.
A fraction f × c× o thus produces outputs which needs to be
transferred to the host processor.
5. eoffchip - average energy per instruction in the off-chip
compute engine.
6. etxfer - energy expended in the transfer of an output from
the off-chip framework to the host processor.
7. toffchip - ratio of cycle time for the off-chip compute
framework to that for the host processor.
8. n - fraction speedup due to parallelism in the framework

TABLE I. TYPICAL VALUES OF PERFORMANCE AND ENERGY IN AN
OFF-CHIP COMPUTE FRAMEWORK

eoffchip 50pJ (higher energy per instr. considering
local memory load and store)

etxfer 10,000pJ (same order of magnitude as the energy for
an off-chip non-volatile memory access)

toffchip 15 (typical processor (@ 1GHz)
to off-chip memory cycle times)

n 0.01 (with the assumption that large # of compute engines
can be accommodated into large last level memory)

ttxfer 10,000 (same order of magnitude as latency for
an off-chip non-volatile memory access)

(ratio of on-chip to off-chip compute engine count).
9. ttxfer - time taken in terms of processor clock cycles to
transfer an output from the off-chip compute framework to the
host processor.
With these primitives, the average time to execute an instruc-
tion in a system with a host processor and the off-chip compute
framework can be formulated as:

Tsys = Toffchip + Tproc + Ttxfer (1)

where

Toffchip = toffchip × (If>g(f)× (f − g + f × c× n)

+ If≤g(f)× f × c× n)

Tproc = (1− f)× tproc

Ttxfer = ttxfer × (If>g(f)× ((f − g)× o + f × c× o)

+ If≤g(f)× f × c× o)

where

IA(x) =

{
x if x ∈ A
0 if x /∈ A

In equation 1, Toffchip, Tproc and Ttxfer denote the frac-
tion latencies in the off-chip compute framework, due to pro-
cessor execution and in the transfer of the resultant output from
the off-chip platform to the processor. A similar expression
for the energy of the resultant system is given below which
shows the transfer energy increasing and the processor energy
decreasing with increasing f :
Esys = Eoffchip + Eproc + Etxfer (2)

where

Eoffchip = eoffchip × (If>g(f)× (f − g + f × c) + If≤g(f)× f × c)

Eproc = (1− f)× eproc

Etxfer = etxfer × (If>g(f)× ((f − g)× o + f × c× o)

+ If≤g(f)× f × c× o)

With performance and energy values typical to the oper-
ation of an off-chip compute framework (modeled after the
MAHA platform as listed in Table I), we estimate the system-
level improvement in energy-efficiency for applications with
varying values of the primitives listed earlier. Fig. 3(a) shows
the three components and the total system energy with g=0.7
and c=o=0.05, respectively. As clearly evident from Fig. 3(a),
for the values of c and o selected, minimum energy consump-
tion is achieved for values of f close to g. For values of c and o
order of magnitude large or small, the total energy was found to
always increase or decrease with f, respectively, suggesting that
small and large c and o value always favor or disfavor off-chip
acceleration. A similar dependance on c, o and f was observed
for total execution latency. Combining the performance and
energy trends for this system, we derive the EDP trend of the
total system (Fig. 3(b-d)). As expected, the EDP improvement
progressively diminishes as the data-intensive nature (value of
g) of the application is reduced. Finally, from Fig. 3(b) and (c)

Fig. 4. In-memory acceleration can be employed by integrating reconfigurable arrays
(RA) in multiple levels of the memory hierarchy.

Fig. 5. a) Overview of MAHA architecture and application mapping flow; b)
µ-arch details of a single computing block (MLB); c) Synchronization among
multiple MLBs over shared interconnect.

we note that for EDP improvement > 1, for a given g, there
exists an f for which maximum EDP improvement can be
observed. Given the nature of an application (g and o known),
knowledge of its mapping to the off-chip framework (c and
n known), it is possible to determine f for which maximum
energy savings can be obtained by off-chip computing.
B. Desired traits for off-chip acceleration: From the analysis
above, we infer that applications with large number of memory
references (high value of ‘g’) and small output data set (low
value of ‘o’) are particularly amenable to improvement in
energy-efficiency through off-chip computing.

III. MAHA: COMPUTING IN NON-VOLATILE MEMORY

As illustrated in Fig. 4, the concept of in-memory comput-
ing can be applied to each level of the memory hierarchy. Each
of these levels bear the common characteristics of i) modular
memory design and ii) hierarchical organization of memory
blocks. Design-time modifications as proposed here for the
MAHA architecture can transform these memory blocks into
lightweight processors with each block as its local memory.
The trade-offs involved in such modifications would however
differ depending on the underlying memory technology.

A. Overview

MAHA is a spatio-temporal mixed-granular hardware re-
configurable framework. It consists of an array of processing

Fig. 6. Conventional hierarchical organization of memory and its modification
with additional programmable logic.

elements (PE), communicating using a hierarchical intercon-
nect architecture. The target application to be mapped to
MAHA is represented as a control and data flow graph (CDFG).
The software flow partitions this CDFG into smaller multi-
input multi-output tasks and defines the schedule for execution
of each task. One or more of these tasks are then mapped to
individual PEs. Fig. 5(a) illustrates the application mapping
flow for the MAHA framework.

1) Compute Logic: Each compute block or PE for the
MAHA framework is referred to as Memory Logic Block or
MLB. The details of a single MLB as illustrated in Fig. 5(b)
shows a dense non-volatile memory array which stores data.
This is referred to as function table. A custom datapath with
arithmetic units such as adder and multiplier and permutation
unit such as shifter constitute the logic datapath. A local
register file is responsible for storing the temporary operands.
Sequence of operations inside a MLB is controlled by a µ-
code controller referred to as schedule table. Tasks mapped
to each MLB execute in a topological manner over multiple
clock cycles, communicating via local register file.

2) Interconnect Fabric: Tasks mapped to different MLBs
communicate via a programmable and hierarchical intercon-
nect. As illustrated in Fig. 5(c), the interconnect is time-
multiplexed and shared among multiple MLBs. As shown in
Fig. 5(c), Sig1 and Sig2 are outputs of MLB A and B at
the end of cycle 1, while Sig3 and Sig4 are outputs at the
end of cycle 2. Signals at the end each cycle are transmitted
over the same local/global channel to MLB C. Since an input
application is statically scheduled to the MAHA hardware,
inter-MLB communication is deterministic and obviates the
need for complex on-chip networks.

3) NVM Instrumentation: A hardware framework which
implements the MAHA architecture can be realized through
design time modifications (referred to as instrumentation) to
a hierarchical memory organization which allows the memory
to dynamically process during runtime. As illustrated in Fig.
6, on-demand computing requires:
i. Compute Logic: Each memory subarray which sits as a
leaf node in a hierarchical memory organization must be
augmented with additional compute logic which supports com-
putation on-demand.
ii. Routing Switches: Data movement in a hierarchical inter-
connect (as an example Fat tree) organization can be achieved
through routing switches present as part of the interconnect
(refer to Fig. 6).

4) Key benefits: Key benefits of MAHA architecture are:
i) In contrast to large on-chip caches, each MLB incorporates
a small local memory which scales better with technology.
The data movement inside the MAHA framework is explicitly
controlled through software mapping of the target application.
This alleviates the requirement for complex control hardware.
ii) MAHA is a spatio-temporal framework. In contrast to
conventional FPGAs which are fully spatial and are limited
by interconnect power and performance, MAHA allows the
application mapping tool to trade-off distributed vs local
execution for maximum energy-efficiency.
iii) MAHA is a mixed-granular framework capable of exploit-
ing both data and task parallelism. The application mapping
tool receives a high-level application description and efficiently
maps it to an underlying hardware framework. In this respect,
it is easily programmable like a GPU and flexible like a FPGA.

B. NAND Flash - A Case Study

The benefits of memory-based computing as outlined be-
fore has already been validated for the case of on-chip volatile
CMOS SRAM and non-volatile STTRAM technologies [10].
In this work, with NAND Flash as a representative non-volatile
storage we demonstrate that MAHA can be effective in mitigat-
ing the Von-Neumann bottleneck data-intensive applications.
Flash memory has seen an astounding increase in integration
density, making it attractive for commodity storage systems
as well as embedded applications. Recently, 3-D NAND
Flash memories have gathered increasing attention as future
ultrahigh-density memory technologies [11]. It has the benefits
of being a fabrication process that is planar and fully compat-
ible with complementary metaloxide-semiconductor (CMOS)
technology. In this work therefore, we describe the off-chip
MAHA framework based on CMOS-compatible NAND Flash
memory array.

1) Overview of current Flash organization: A typical or-
ganization of the NAND Flash memory is shown in Fig. 7(a)
with Flash memory array and a number of logic structures
responsible for controlling the read and write operations to
the Flash [12]. The Flash Translation Layer (FTL) converts
the logical address of a location to its corresponding physical
address. The NAND Flash typically has 8-bit or 16-bit I/O
bandwidth. NAND Flash is organized in units of pages and
blocks. Typical page size is 2KB [12] and each block can have
64-128 pages. During Flash read, contents of the entire page is
first read into the page register and then serially transferred to
the Flash external interface. Organization details, read/write
performance and energy values for a representative NAND
Flash at 45nm are obtained from opensource models [12].

2) Modifications to Flash array organization: We intro-
duce design modifications to the Flash memory so that it
is essentially transformed into an array of MLBs, which
communicate over a hierarchical interconnect.
i. Compute Logic Modifications: A group of N Flash blocks is
logically clustered to form a single MLB. MLB control logic
(i.e. schedule table) and custom datapath are implemented
using static CMOS logic. In light of write endurance problems
for NAND Flash, we write to the Flash memory only during
the configuration phase (application-mapping phase); a custom
dual ported asynchronous read register file for storing the
temporary/intermediate outputs. A fast intra-MLB multiplexor

Fig. 7. a) Modifications to Flash memory interface to realize MAHA
framework. A small control engine (CE) outside the memory array is added
to initiate and synchronize parallel operations inside the memory array; b)
Modified Flash memory array for on-demand reconfigurable computing. The
memory blocks (called MLB) are augmented with local control and compute
logic to act as a hardware reconfigurable unit.

Fig. 8. Hierarchical programmable interconnect architecture to connect a
group of MLBs.

tree consisting of pass gate multiplexors and weak keepers
is responsible for selecting appropriate operand(s) for the
memory and the datapath. All operations within a given MLB
are scheduled beforehand and stored as a µ-code inside the
schedule table, implemented using a 2-D flip-flop array. For a
normal NAND Flash read, the entire page (typically 2KB) is
read at a time. However, to operate on data of smaller sizes, we
propose a narrow-read scheme for the memory blocks in which
a fraction of a page size is read at a time. The proposed scheme
incurs hardware overhead due to wordline segmentation, but
improves energy-efficiency in scenarios where operands of
smaller sizes are stored in contiguous locations of a given page.
In this scheme data sizes of 4096 bits being read out from each
page and stored inside buffers. The two planes of the Flash
array are logically divided into 8 banks each consisting of 2

Fig. 9. Comparison of a) total processing time; b) total energy requirement and c)
energy-efficiency (measured in terms of EDP) between a CPU only system and a system
with CPU and MAHA based hardware accelerator.

MLBs each. Each MLB contains 256 blocks of Flash memory.
ii. Routing logic modifications: In order to minimize the inter-
MLB PI overhead, we assume a set of hierarchical buses with
a crossbar present at each level of hierarchy (Fig. 8). We have
assumed a hierarchy with 4 levels similar to banks, subbanks,
mats and subarrays present in a typical cache data array.
iii. ECC Computation: Block management and Error Control
Coding (ECC) are well-known techniques to ensure reliability
for normal Flash read and write operations. Typically ECC in
NAND Flash is capable of correcting 1-bit and detecting up to
2-bit errors (SECDED) per 512 bytes (4096 bits) [12] and ECC
bits are interleaved with data. In the MAHA framework, ECC
check is performed inside each MLB for every read operation.
Any error detected by SECDED hardware is indicated to the
Flash management layer and execution is stalled.

IV. RESULTS

A. Simulation Results

After considering the trade-offs associated with the MLB
and interconnect design, we arrived at a NAND based MAHA
architecture with 16 MLBs arranged in a hierarchy of 8,1,1,2.
Since each MLB comprises of 256 blocks, all 4096 blocks of
the 1GB Flash are organized into the 8,1,1,2 hierarchy. Com-
pared to the baseline Flash design, the area overhead for this
final MAHA configuration is found to be only 5.3%. Energy
and performance of a hybrid system with both software exe-
cution engine and MAHA hardware accelerator is compared
against a software only solution. In the latter, the baseline CPU
is a 2-way in-order machine with 32KB 1-cycle I/D L1 and
512KB 4-cycle L2 cache. Typical off-chip access latency and
energy estimates were obtained from [2]. Simulation results
with the MAHA framework show considerable improvements
for data-intensive applications. These findings are presented in
Fig. 9 and summarized below.
i. Reduction in off-chip communication: From our simulation,
we note that for data-intensive applications such as Time-
Frequency Transformations where the output data size is of
similar order of magnitude to the input data size, execution
time and energy is dominated by data transfer from off-chip to
on-chip memory. For these applications, a lower improvement

Fig. 10. a) Overview for off-chip acceleration with MAHA framework.
b) System architecture for FPGA based hardware emulation framework. c)
Improvement in latency and energy with MAHA based off-chip acceleration.

in off-chip traffic is observed. On an average, we observe
75% improvement in execution time on the baseline processor,
71% in on-chip traffic and 45% improvement in off-chip
traffic. Note that maximum savings is for Mapreduce class
of applications which have large input and small output data
set and are not compute-intensive.
ii. Improvement in energy-efficiency: Fig. 9(c) compares the
energy efficiency for the applications mapped. On an average
MAHA improves the energy-efficiency by 91.2×. The times
improvement in energy-efficiency compared to the baseline
CPU model varies over a large range, from 1.5X to 4900X
for Census - a Mapreduce application. This proves that not all
applications are amenable to acceleration through in-memory
computing. The applications studied are therefore categorized
as:
i. Applications (e.g. Census) which are purely data intensive
where the output data size is significantly less compared to the
input data size benefit most.
ii. Applications (e.g. 2D-DCT) which are moderately compute
intensive, but the output data size is equivalent to the input
data size benefit less.
iii. Applications (e.g. AES) which are compute-heavy and the
output size is same or less than input size benefit still less.
iv. Applications (e.g. color interpolation) with low computa-
tion requirement and the output size is same as input data size
are least likely to benefit.
.

B. Emulation Results

We have developed a FPGA-based emulation framework
which validates i) functionality and synchronization of multiple
MLBs for several application kernels; and ii) interfacing the
MAHA framework with the host processor. In this setup,
MAHA behaves as an energy-efficient loosely-couple off-chip

accelerator to which data-intensive kernels can be off-loaded.
The overview of the scheme is illustrated in Fig. 10(a) with
architecture and system details provided in Fig. 10(b). The
hardware emulation framework was developed in the Altera
Stratix IV FPGA environment. Energy values were obtained
using DE4’s onboard current sensor and latency from Signal-
Tap Logic Analyzer. Based on cycle-accurate experimental
data (Fig. 10(c)), we observed average improvement of 1.3X
in latency and 4.3X in energy for the three benchmarks. EDP
improvements in the order of 10X, 7X and 3X was achieved
on the emulation platform.

V. CONCLUSION

The advent of non-volatile random-access memories with
fast and energy-efficient read/write capabilities has opened
new avenues in computer architecture research. In this work,
we have presented MAHA, a spatio-temporal reconfigurable
hardware which can greatly improve the energy-efficiency
for data-intensive applications by computing in close prox-
imity to the non-volatile storage. Design-time modifications
to the NVM which allows the memory array to dynamically
transform into a reconfigurable hardware on-demand has been
described in detail. Our investigation demonstrates MAHA
improves energy-efficiency for data-intensive tasks and that
key application and system primitives can be leveraged to
apriori identify the applications which can benefit from the
proposed in-memory computing approach.

REFERENCES

[1] Intl. Solid State Circuits Conference 2013 Tech Trends [Online] http:
//isscc.org/trends/

[2] P. Kogge et al., “ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems”, Exascale Computing
Study Report [Online] http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/exascale final report 100208.pdf

[3] Nicholas. P. Carter et al., “Runnemede: An Architecture for Ubiquitous
High-Performance Computing”, Intl. Symposium on High-Performance
Computer Architecture, 2013.

[4] S. Pawlowski, “Architectural Considerations For Todays Technology
Trends”, [Online] http://eecs.oregonstate.edu/research/vlsi/teaching/
ECE570 WIN13/Pawlowski\%20February\%2022\%202013\
%20OSU.pdf

[5] C. Villa et al., “A 45nm 1Gb 1.8V phase-change memory”, Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International , vol., no., pp.270,271, 7-11 Feb. 2010.

[6] A. Kawahara et al., “An 8Mb multi-layered cross-point ReRAM macro
with 443MB/s write throughput”, Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2012 IEEE International , vol., no.,
pp.432,434, 19-23 Feb. 2012.

[7] T. Kawahara, “Challenges toward gigabit-scale spin-transfer torque ran-
dom access memory and beyond for normally off, green information
technology infrastructure”, Jnl. of Applied Phys., Vol. 109, No. 7, 2011.

[8] C.E. Kozyrakis et al., “Scalable processors in the billion-transistor era:
IRAM”, Computer, Vol. 30, No. 9, 1997.

[9] Final Report: Processor-In-Memory (PIM) based Architectures for
PetaFlops Potential Massively Parallel Processing [Online] http://ntrs.
nasa.gov/archive/nasa/casi.ntrs.nasa.g

[10] S. Paul et al., “Energy-Efficient Reconfigurable Computing Using a
Circuit-Architecture-Software Co-Design Approach”, IEEE Journal on
Emerging and Selected Topics in Ckts. and Sys., Vol. 1, No. 3, 2011.

[11] W. Kim et al., “Multi-layered vertical gate NAND flash overcoming
stacking limit for terabit density storage”, Proc. VLSI Tech., June, 2009.

[12] Micron 1Gb NAND Flash Data Sheet [Online] http://download.micron.
com/pdf/datasheets/flash/nand/1gb nand m48a.pdf

