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Abstract—Field programmable gate arrays (FPGAs) are
well-established as fine-grained reconfigurable computing plat-
forms. However, FPGAs demonstrate poor scalability in advanced
technology nodes due to the large negative impact of the
elaborate programmable interconnects (PIs). The need for such
vast PIs arises from two key factors: 1) fine-grained bit-level data
manipulation in the configurable logic blocks and 2) the purely
spatial computing model followed in the FPGAs. In this paper,
we propose ENFIRE, a novel memory-based spatio-temporal
framework designed to provide the flexibility of reconfigurable
bit-level information processing while improving scalability and
energy efficiency. Dense 2-D memory arrays serve as the main
computing elements storing not only the data to be processed
but also the functional behavior of the application mapped into
lookup tables. Computing elements are spatially distributed, com-
municating as needed over a hierarchical bus interconnect, while
the functions are evaluated temporally inside each computing
element. A custom software framework facilitates application
mapping to the framework. By leveraging both spatial and tem-
poral computing, ENFIRE significantly reduces the interconnect
overhead when compared with FPGA. Simulation results show
an improvement of 7.6x in energy, 1.6x in energy efficiency,
1.1x in leakage, and 5.3x in unified energy efficiency, a met-
ric that considers energy and area together, compared with
comparable FPGA implementations.

Index Terms—Energy efficiency, field programmable gate
arrays (FPGA), fine-grain reconfigurable hardware, memory-
based computing (MBC), spatio-temporal computing.

I. INTRODUCTION

HERE is an inherent tradeoff between flexibility and

efficiency in a digital system design, as the implemen-
tations range from general purpose processors (GPPs) to
application specific integrated circuits (ASICs) at opposite
ends of the spectrum. Microprocessors have high flexibility,
but relatively low performance, whereas the ASICs provide
higher performance, lower area, and greater energy efficiency,
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but as they are highly optimized and application specific, they
lack the flexibility of the GPPs. Reconfigurable computing has
emerged to bridge the gap between these two extremes. Such
frameworks can generally be categorized into fine-grained
and coarse-grained platforms. For fine-grained computing
with postsilicon reconfigurability, the field programmable gate
arrays (FPGAs) have become increasingly attractive, balancing
the application mapping flexibility of the GPPs with the higher
performance of the ASICs, while lowering costs and enabling
more rapid and less risky development compared with the
ASICs [1].

For the past decade, improving FPGA area and latency
have been among the major challenges in FPGA design.
However, for sub90-nm technology nodes, power has become
an increasingly important consideration [2]. In order to reduce
FPGA power consumption, manufacturers and researchers
have investigated the device level techniques, such as low-K
dielectric, a dual-Vi, process, and triple-oxide approach, and
the circuit level techniques, such as decreased logic granularity
and clock/power gating [3]. For certain technology nodes,
these techniques reduce power and energy effectively, but they
cannot keep pace with transistor scaling in the future.

Traditionally, FPGA architectures employ a purely spatial
computing model. Applications are mapped into a set of
multiple-input, single-output lookup tables (LUTs) connected
by the programmable interconnects (PIs) [4]. However, this
requires a rather elaborate PI network, which becomes a
major performance bottleneck and leads to poor power, per-
formance, and scalability across technology nodes, where
the PI network alone has been shown to account for an
80% of power consumption and a 40%-80% of critical path
delay [5]. Furthermore, because of the dominance of the
PI network, FPGA platforms experience poor performance
scalability across the technology nodes. As a result, there is a
growing need for alternative reconfigurable computing frame-
works, which can reduce the PI requirement, improving energy
efficiency and technology scalability over the conventional
architectures.

In order to improve area and performance, researchers
have investigated using an FPGA’s embedded memory arrays
for computation, when they are not configured as on-chip
memory [6], [7]. Time-multiplexed hardware reconfigurable
schemes have also been investigated to increase the hardware
utilization, and therefore save area and performance [8], [9].
However, when executing a specific application, they are
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still considered as a fully spatial computing model, which is
similar to the traditional FPGAs, and hence incur a large PI
overhead. Spatio-temporal reconfigurable hardware schemes
have also been proposed to improve the utilization of both PI
and computing elements [4]. Instead of using an arithmetic
logic unit for multicycle execution as done by PipeRench [10]
MAHA [11] uses a memory-based computing (MBC) scheme
to improve energy efficiency. However, these frameworks
operate with a granularity of at least 8 bits, and therefore
suffer from poor resource efficiency and low energy efficiency
when executing bit-level applications. In addition, the Garp
architecture [12] was proposed to embed a reconfigurable
FPGA-like architecture within a CPU; however, this is essen-
tially a temporal computing element (CPU) using a spatial
fabric (FPGA) to accelerate some computations, so function
evaluation is not strictly spatio-temporal. Also related is the
Tabula architecture [13], which still performs spatial data
processing, though it time-multiplexes the FPGA resources
to increase the apparent number of LUTs from the user’s
perspective.

As an alternative, we propose an ENergy-efficient
FIne-grain spatio-temporal REconfigurable ENFIRE frame-
work, which can be described as a configurable array of the
memory-based computing blocks (MCBs). Each computing
element, referred to as a memory logic block (MLB), is suit-
able for temporal computing. It is capable of fine-grained bit-
level function evaluation using a combination of a register file,
which allows bit-level access, with the ability to store multiple
LUT responses in the embedded 2-D memory array. A function
is evaluated in an MLB by accessing the memory over
multiple cycles. Each MLB contains a schedule table, a dense
2-D memory array, and a small controller. The schedule table
stores the instructions, and a minimally modified 2-D memory
array stores not only the data to be processed but also the
function responses of the mapped application.

Execution with an MLB is performed temporally, while the
MLBs are distributed spatially and communicate through a
hierarchical bus interconnect. Thus, ENFIRE operates in a
spatio-temporal manner, which can be optimized to provide
high energy efficiency for a given application. This represents
a paradigm shift toward more balanced energy-efficient com-
puting that can serve as either a stand-alone FPGA replace-
ment or as an on-die integrated solution within a CPU leading
to increased flexibility, dynamic reprogrammability, and effi-
cient use of the die area for a variety of workloads [14], [15],
including fine-grained and energy-efficient FPGA-like logic
functions. In addition, we have developed a custom application
mapping tool to efficiently map applications into the ENFIRE
framework. A set of random logic benchmarks of varying
complexities has been successfully mapped using this tool and
functionally verified for correctness.

In particular, the paper makes the following novel
contributions.

1) It proposes ENFIRE, a novel MBC framework, which
uses a 2-D memory array hybridized with CMOS
controlling logic. Unlike previous work in MBC,
ENFIRE enables energy-efficient mapping of FPGA-like
fine-grained logic that can be used stand-alone as an

FPGA replacement, or embedded within a GPP for
energy-efficient acceleration of fine-grained workloads.
Many applications, including analytics, stream process-
ing, and information encoding/decoding can largely ben-
efit from efficient fine-grained data processing, which is
not available in the conventional coarse-grain reconfig-
urable architectures [4].

2) It provides the design details of the proposed architec-
ture including the u-architecture of the MLBs. It also
describes in detail the hierarchal interconnect model
between the MLBs.

3) It presents a custom-designed complete software appli-
cation mapping flow, describing the major steps of the
software framework, and also presents several examples
of the application mapping.

4) It describes the modeling process of the hardware
components, shows the simulation setup, and presents
the simulation results. It then demonstrates that the
ENFIRE framework can achieve considerable improve-
ment in energy efficiency compared with an FPGA
implementation at the cost of increased latency.

The rest of the paper is organized as follows: Section II
provides background on MBC and the motivation for this
paper; Section III describes the overall hardware architecture
of ENFIRE; Section IV presents the software architecture and
the algorithms used in application mapping; Section V presents
the ENFIRE application mapping flow and hardware model,
as well as the FPGA mapping setup; Section VI presents
the mapping results; finally, we conclude in Section VII with
future directions for this paper.

II. BACKGROUND AND MOTIVATION

In this section, we provide an overview of the earlier works
aimed at improving the energy efficiency of the FPGAs and
an overview of the MBC framework. We also describe the
motivation for developing the ENFIRE framework.

A. Overview of Memory-Based Computing

Improving energy efficiency in the FPGAs has been heavily
researched in recent years. In one approach, different resource
organizations, such as linear or systolic arrays, were chosen
for specific applications given the performance and resource
limitations [16]. Improving resource selection was also investi-
gated to reduce interconnect multiplexer requirement, thereby
reducing power consumption [17]. Finally, supply voltage
programmability has been investigated to reduce interconnect
power [18].

MBC also provides a solution to reduce PI overhead [11].
Fig. 1(a) shows the MBC application mapping operation:
a target data flow graph (DFG) is decomposed into smaller
normalized nodes; those sharing many connections are fused
into partitions, realized as the multi-input, multi-output logic
blocks. Next, the fused partitions are mapped as the LUTs
to the embedded memory array of one or more MLBs, and
finally scheduled for evaluation over multiple cycles [11].
During application mapping, information, such as address,
scheduling, and connectivity among the partitions, is stored in
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of computing elements and PI requirement (estimated with VPR [20]) for ISCAS-89 sequential benchmark s38417 when mapped to the 65-nm CMOS FPGA

framework and 65-nm MBC [21].

a register bank [schedule table in Fig. 1(b)] that behaves as a
microcode controller in each computing block. The embedded
memory array, in which the logic partitions are mapped,
is referred to as the function table. A bank of flip-flops
stores the intermediate partition outputs, to be used in the
following evaluation cycles. Together, they form the core of the
computational building block. Multiple MCBs are connected
through a configurable interconnect framework similar to that
in the conventional FPGAs; however, the larger partition
size and the temporal execution of partitions inside a single
processing element (PE) greatly reduces the PI requirement
[Fig. 1(c) and (d)]. In this manner, the proposed framework
can achieve significant improvements in energy efficiency over
a conventional FPGA framework [19].

B. Motivation

Traditional FPGA frameworks use a fully spatial computing
model, enabling high flexibility at the expense of increased
area, power consumption, and scalability. Unlike logic circuits,
which scale well at new technology nodes, the FPGA PI net-
work does not. Therefore, a reconfigurable framework that
can implement the fine-grained functions while simultaneously
reducing the interconnect requirement can be viewed as a
potential FPGA replacement for the applications, where energy
efficiency is crucial.

The proposed MBC architecture is a good candidate
for these applications because of its low PI require-
ment (Section II-A). Energy consumption from data movement
through PIs can be minimized with local computation by
preferentially mapping frequently communicating functions as
multiple LUTs in the same MLB. Moreover, MBC computa-
tion relies on the memory accesses; optimizing memory access
energy and latency can have a significant positive impact
on the framework. As a result, an energy-efficient hardware
architecture and an optimized mapping software codesign
approach are required.

In particular, the proposed ENFIRE architecture differs from
the FPGAs in the following ways.

1) FPGA architecture is fully spatial, while ENFIRE is
spatio-temporal. This serves to minimize the PI require-
ment by using temporal execution within each MLB.

2) FPGAs map applications into small 1-D LUTSs, but
ENFIRE uses the dense 2-D memory arrays to hold not
only the data but also multi-input, multi-output LUTs
for computation.

3) FPGAs wuse a fully spatial PI structure, but
communication between the MLBs in ENFIRE
uses a time-multiplexed hierarchal bus, greatly reducing
interconnect complexity.

In addition to the random logic benchmarks used in this

paper, we note several other applications, which can benefit
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Fig. 2. Block diagram of an MLB.

from an accelerated bit-level access, including various stream
ciphers, the Monte Carlo methods [22], pseudorandom number
generators such as Mersenne Twister [23], and applications
using bitmaps for a compressed data representation.

III. HARDWARE ARCHITECTURE

The block diagram of a single ENFIRE PE is shown
in Fig. 2. Each PE is referred to as an MLB and operates
independently. Each contains its own schedule (instruction)
table and data memory array, which holds LUT responses in
addition to the data for processing. The MLBs are connected
with a two-level hierarchical bus interconnect. The first level,
referred to as a cluster, contains four MLBs, while the second,
called a tile, contains four clusters. In the remainder of
this section, we describe in detail the u-architecture of a
single MLB along with the interconnect structure and the
communication patterns between the MLBs.

A. MLB Structure

Fig. 2 shows an MLB block diagram. Each MLB consists

of the following components.

1) Program Counter tracks the current instruction being
executed.

2) Schedule Table memory array, which holds the instruc-
tions for the given application.

3) Decoder responsible for decoding the instructions
fetched from the schedule table.

4) Register File holds the intermediate results from the
application during execution.

5) Address Generation and Memory Controller generates
the memory access request and corresponding memory
address for LUT operations.

6) Data Memory large 2-D memory array, which holds the
LUTs, as well as the data being processed.

7) Datapath Logic controlled by the decoded instruction

and determines the output destination.

The MLB is more analogous to the complex logic
block (CLB) structure in an FPGA [24] than to a standard
processor. The primary difference between an MLB and a
CLB is that the MLB stores multiple LUTs, which can be
dynamically selected at runtime, as opposed to a single, fixed
configuration. This allows for a spatio-temporal computing
model that enables more efficient resource reuse than a CLB.

Since the random logic functions tend to have a high level
of data parallelism, the MLBs have two separate execution
engines to improve throughput. Since these applications also
do not typically have a high level of branching, the parallel
operation can be statically scheduled in a Very Long Instruc-
tion Word (VLIW)-2 manner or two instructions per cycle.
To achieve this, each schedule table entry holds two inde-
pendent MLB instructions, which are decoded and executed
in parallel in two separate datapaths. Two memory banks in
the data memory are accessed separately with each execution
engine to perform the LUT operations in a given cycle.

Each LUT is a function of eight inputs and can have an
output width of 1-, 2-, 4-, or 8-bits. The choices of such
input and output counts are made after analyzing the appli-
cation mapping (using the described software mapping flow),
instruction encoding complexity, register file size, and memory
size. Larger input and output counts yield a lower number of
operations overall, which is good for execution latency, but
it results in a higher instruction encoding complexity, because
each instruction will need to specify more bit locations. It also
increases the bits written into the register file at a cycle as well
as the size of each LUT. We found the 8-bit input and 1-, 2-,
4-, and 8-bit output widths yield an optimal tradeoff among
the considered factors. The inputs come from the register
file, and are designated in the instruction as eight unique
6-bit addresses. The instruction also encodes which LUT is to
be used in the operation. The proposed MLB p-architecture
studied in this paper allows for eight different LUTs of each
size (8 x 1, 8x2, 8 x4, and 8 x8) for a total of 32 possible LUTs
per MLB. The LUT/data memory is designed to support the
accesses of these different widths. To reduce the complexity
of the address generation logic, each LUT is packed into
separate column(s) of the data memory. The banks are also
sized, so that the number of rows is equal to the number of
entries required for each LUT (28 = 256 rows). This allows
the input to the LUT to be directly mapped to the row address
sent to the memory during the read request. Selection of the
desired LUT response can then be accomplished by selecting
the appropriate bank and the desired column(s) of the memory
to read.

Our design uses the 2-kB memory banks (256 rows x
64 bits/row). Rather than read an entire row to perform a
small memory access, wordline segmentation is used, which
ensures that only the minimum number of required cells are
energized during the read. AND gates are inserted in the path
of the wordline to ensure that the SELECT signal is received
only by the desired cells during a read operation. This scheme,
shown in Fig. 3, allows for four of each sized LUT per memory
bank. Because of a limitation in instruction encoding, there is a
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fifth 4-bit wide segment that cannot be used as an LUT, but
can be used for general data storage if needed.

Though the register file has 16 unique read ports (eight
input bits per instruction, and two instructions per cycle),
there are only two write ports (8-bit wide), given the increased
complexity of a write port. Therefore, after the LUT response
has been read, it must be aligned to the appropriate bits in
the register file. This enables a more streamlined instruction
encoding, requiring only one write address instead of eight.
Writing to each bit within the 8-bit port is individually
controlled by an enable signal, so not all the eight bits need to
be written in the case of 8 x 1, 8 x 2, or 8§ x4 LUT operations.

B. Interconnect Structure

The statically scheduled random logic functions targeted by
ENFIRE eliminate the need for a packet-switched interconnect
scheme and the associated power and area overhead for
routers. Routing information can be efficiently encoded as a
part of the instructions and can be decoded at runtime to enable
the inter-MLB communication as needed.

Most random logic functions exhibit strong spatial locality
of data. To exploit this, ENFIRE utilizes a sparse hierarchical
bus interconnect to enable low-overhead communication for
separate MLBs. Within each cluster, an 8-bit bus fully connects
all the MLBs [Fig. 4(a)]. This yields an available bandwidth
of 10.26 GB/s at the maximum operation frequency of 1.3 GHz
(Section V-A). Between the clusters, there is a similar
16-bit bus, 4-bits of which are reserved for each MLB in the
source cluster [Fig. 4(b)]. When an MLB places data on its
intercluster bus, the data are broadcast to all other clusters in
the tile.

Communications are initiated either implicitly as a part
of an LUT operation or explicitly through an additional
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Fig. 5.

MOVE instruction. Explicit communication can be conducted
between any MLBs in a tile and requires the transferring
MLB to initiate the request with a MOVE instruction. Once
the data are available on the bus, any other MLB may
read the data on the following cycle by issuing its own
MOVE operation.

LUT operations can also output part, or all, of the LUT
response to the bus, in addition to storing the result to the
register file, by setting a flag in the instruction. If set, up to
four of the bits output from the LUT will be automatically
written to the intracluster bus. Data may also be read from the
intracluster bus implicitly using virtual register ports, which
connect the upper 3 x 8 bits of the register file with the 3 x8 bits
of the intracluster bus coming from the other MLBs in the
cluster. When a read request is issued to one of these registers,
the data from the bus are used instead of the current register
contents. This type of communication is only available at the
intracluster level.

IV. SOFTWARE ARCHITECTURE

An effective and efficient software mapping flow must be
designed to enable the users to map applications into the
corresponding hardware framework. We have developed a
comprehensive software flow capable of mapping applications
to the proposed ENFIRE framework. Fig. 5 shows an overview
of the mapping flow, including LUT optimization and
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operation mapping. The tool itself is developed in C and has
been verified using a set of applications of varying complexity.
In the verification process, any intermediate mapping results
can be converted to Verilog for functional simulation. The
tool has also been interfaced with Graphviz [26] for visually
analyzing and debugging the outputs from each intermediate
step.

A. LUT Optimization

Using input in the form of a Berkeley logic interchange
format (BLIF) [27] file, the tool aims to map applications into
8x1,8x2,8x4,and 8 x 8 LUTs (Section III). Several pro-
grams have been used to optimize the LUT response, including
Quartus [28], Synopsys Design Compiler [29], Rasp [30], and
combinations thereof. These programs map the application into
K x 1 LUTs, where K is a number less than 8. Outputs
from individual programs and combinations of these programs,
along with the original input, are passed to the partitioning
process. During this stage, the tool attempts to distribute the
input bits on multiple K x 1 LUTs and cluster them into larger
8x1,8x2,8x4, and 8 x 8 LUTs.

A DFG in the form of a directed acyclic graph can be used
to represent the set of K x 1 LUTs, where each LUT is a vertex
in the DFG. The problem of partitioning the DFG into multi-
input, multi-output representation can be formulated as an
optimization problem considering evaluation time as the opti-
mization objective and memory requirement as a constraint.
The partitioning algorithm starts with creating a hypergraph
from the vertices, and then sorts the vertices in topological
order. The sorted vertices are traversed from the primary
inputs and considered for inclusion in a partition. A vertex
v is included in a partition if it satisfies the topological
order (among partitions), the size limit in terms of number
of inputs and outputs of the partitions, and partition level
parallelism (PLP), which represents the number of indepen-
dent partitions (i.e., the partitions that can be evaluated in
parallel). Since this partitioning algorithm tries to maximize
the PLP (for improving performance), we refer to this as
PLP-aware partitioning. The fanout cone of vertex v included
in a partition is traversed to maximize the number of vertices
per partition (thus minimizing the total number of partitions).
If no more vertices can be added to a partition without
violating its input/output bounds, the partition is added to
the partition pool and vertices in the partition are marked as
traversed.

After partitioning, the DFG that optimally reduces the
number of LUTs is selected and to be used in the following
operation mapping flow.

B. Operation Mapping

The inputs to the mapping software are the DFG description
along with the ENFIRE configuration description, including
the number of MLBs, the memory size, and number of regis-
ters per MLB. The tool also reports the number of cycles, num-
ber of operations by type, and the number of MLBs required
for the input application. Latency and energy estimates for
executing an application can be calculated based on the
mapping results and considering the performance and energy

models for each component of the hardware (Section V-A).
The essential steps of the operation mapping flow are as
follows.

1) Fusion: Some operations can be opportunistically
combined to minimize the total number of operations
needing evaluation as well as the total execution energy
and latency. In this step, the partitions are levelized, and
the vertices are shuffled among the partitions of the same
level as well as across the levels (while maintaining
topological dependence). This allows the vertices with
shared inputs from some partitions to be subsumed
inside another partition, thus, resulting in a reduced
number of partitions.

2) Packing: Postfusion operations are mapped to the MLBs
considering hardware resource availability and the nature
of the operations. Maximum fanout free cone (MFFC)
and maximum fanout free subgraph (MFFS) sharing [7]
heuristics are used. Starting from a new MLB, the parti-
tions are packed into the MLB as a cluster of partitions
by using MFFS method under the constraints of memory
size, 1/O size, register size, and the number of LUTs
allowed in each MLB. When the hardware resource is
not sufficient for including more partitions, a new MLB
will be employed using the MFFC method.

3) Placement: Partition clusters are assigned to the MLBs
in the memory array. A recursive bisection-based heuris-
tic that minimizes the PI usage is used to place the MLBs
in a hierarchical fashion. Clusters are divided into the
two groups in a way that minimizes the communication
between them. Each group is then similarly divided into
subgroups until it reaches the last hierarchical level, and
all the subgroups are assigned to the hierarchal MLBs.

4) Routing: Communication between the MLBs follows
the interconnect structure described in Section III-B.
Interconnect information is stored in the instruction and
statically scheduled. Communication between the LUTs
must consider operation space, bus width, total memory
size, and MLB register count. Routing is done in a
bottom-up hierarchical manner, where local communi-
cations are routed first, followed by routing between the
MLBs, then within higher hierarchical levels.

Several routing examples have been presented in Fig. 6.
Communication within the clusters is presented on the left,
while communication between the clusters is shown on the
right. In the first case, the source and destination nodes are
in the same MLB, and so the LUT output must be stored
locally until the destination node has executed. In the second
case, the source and destination nodes are in the same cluster,
but different MLBs, and they are scheduled in two subsequent
cycles. The intraMLB bus will be used, so that the source LUT
output can be used as an input in a different MLB.

1-MOVE communication, including As Late As Possi-
ble (ALAP) and As Soon As Possible (ASAP), and bypass
communication schemes occur when the destination is in
another MLB in a future cycle. ALAP is given priority over
ASAP, as it enables the sender to batch several bit transfers
in a single MOVE operation. 1-MOVE bypass incurs greater
communication overhead, and so it has lower priority than



QIAN et al.: ENFIRE: A SPATIO-TEMPORAL FINE-GRAINED RECONFIGURABLE HARDWARE 183

Communication within cluster Communication between clusters

Same MLB Direct comm. Direct communication
MLBO MLBO MLB1 Cluster0 ; Cluster1
Cycle 0
Cy e1 AT D D Cycle 0
cle
yelel W Cycle 1
Cycle 2
Cycle 2

1-MOVE communication
2-MOVE communication

MLBO MLB1 MLB2 :
Cluster0 ; Cluster1
Cycle 0 MLBO | MLBO
Cycle 1 Cycle 0 :
Cycle 2 Cycle 1
(@ 1-MOVE ALAP C icati o
© 1MOVE ASAP Communication Cyele2 U 1 W
(® 1-MOVE Bypass Communication
2.MOVE communication Cyclen (N { (J
MLBO MLB1 MLB2 Cycle n+1
Cycle 0 Cyclen+2 (J
(D ALAP Communication
Cycle 1 @ ASAP Communication
Cycle 2
Cycle 3
(D 2-MOVE Direct Communication
(@ 2-MOVE Bypass Communication
Fig. 6. Communication examples for operation mapping.

both ALAP and ASAP. 2-MOVE communication, including
2-MOVE direct and 2-MOVE bypass, involves two extra
MOVE operations leading to higher power consumption and
a lower priority than 1-MOVE. The same priority order
is employed for intercluster communication. Here, an extra
cycle is needed to hold the data on the bus as described
in Section III-B. In case none of these schemes work for
a particular communication, an additional cycle be inserted
between the source and destination cycle. To minimize the
total number of cycles, an iterative procedure is used to
identify the maximally weighted communication in a given
routing round, and the additional cycle is added there. Thus,
only one additional cycle will be added per round until every
communication has been properly routed.

V. MODELING APPROACH

Following the software mapping flow, the ENFIRE specifi-
cations and mapping result are available, including the number
of operations by different LUT types, the number of MOVE
operations, and the total number of cycles. These values are
used to estimate the energy, latency, and area requirements
for each application based on the ENFIRE hardware model.
ISCAS and MCNC benchmarks [25] are considered in this
paper, as they are representative of typical random logic
workloads for this architecture. In this section, we introduce
the hardware modeling approach, present the method used
to evaluate the mapping results, and finally the method for
compared with the FPGA mapping.

A. ENFIRE Hardware Modeling

A register transfer level (RTL) model of the logic elements
was created to model the critical path delay, power consump-
tion, leakage energy, and area of an MLB. The schedule table
and LUT/data memory were modeled and simulated as latch
and SRAM arrays using HSPICE [32]. The HSPICE models

TABLE I
MLB KEY PARAMETERS

Parameter Value
Registers 64 x 1b
Schedule Table 64 x 128b
LUT/data Memory 4kB
MLB Area 30,000 pzm?
Max Clock Frequency 1.3GHz

TABLE I
MLB CRITICAL PATH DELAY BREAKDOWN BY UNIT

Component Delays Delay (ps)
MLB Controller 50
Schedule Table 110
Decoder 70
Register Read 20
Address Generation 40
Memory Controller 140
Memory Access 250
Datapath 100
Register Write 30
Critical Path Delay 760
Proposed Cycle Time 780
Communication Delays  Delay (ps)
Intra-Cluster 12
Inter-Cluster 24

are 32-nm predictive technology models [33]. Both the low-
power and high-performance models are included, and the
designs are optimized to minimize delay and dynamic power
consumption by selecting the optimal transistor models for
each component. For example, the memory cells use the low-
power model, while mux circuits use the high-performance
model for fast access. We assume a worst case transistor
temperature of 100 °C, which is the maximum valid value in
these models. Other components were coded in synthesizable
SystemVerilog and mapped to a 32-nm technology with a fast
nMOS, fast pMOS (FF corner), and high temperature (125 °C)
library from Synopsys [34] using DesignCompiler [29]. A 1V
power supply is used in the 32-nm modeling process. The
simulation temperature is chosen as the worst case operating
condition for the most conservative estimate of ENFIRE’s
power and performance.

Results presented in this section consider the MLB configu-
ration outlined in Table I. Table I also includes the maximum
allowable clock frequency for this configuration and required
die area.

Each functional unit of the MLB was synthesized separately
with delay constraints placed along the overall dataflow path.
While this approach yields an inferior mapping result com-
pared with a completely flattened netlist, it allows the energy
use of each functional unit to be characterized individually.
The critical path delay and fiax were obtained by summing the
individual component delays along the critical path (Table II).
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TABLE III

MLB ENERGY BREAKDOWN FOR DIFFERENT OPERATIONS

Contr. Sched.- Reg. Exec. Total
Operation Logic Tab. & File Energy

(f]) Dec. (f)) | (f)) (f]) (f])

8x1 LUT 37.64 56.69
8x2 LUT 2.65 75.77 94.82
8x4 LUT 147.1 166.2
8x8 LUT 287.8 306.9
Intra-cluster 47.85 64.75
Move (4b)
Intra-cluster 14.92 1.48 95.71 112.6
Move (8b) 0.50
Inter-cluster 95.71 112.6
Move (4b)
Inter-cluster 191.4 208.3
Move (8b)

An additional 20-ps timing slack was included to account
for potential clock jitter or RC wire routing delay, bringing
the cycle time to 780 ps (1.3 GHz). Communication delays
were computed using an RC wireloading model based on the
fabrication characteristics of the Synopsys 32 nm (FO4 load).
Since these delays are so small compared with the LUT/data
memory access time, they can be masked by the schedule table
fetch of the previous cycle and are not in the critical path. For
ENFIRE, the critical path delay is very different from FPGA,
where it is primarily defined by a routing delay [35].

The energy for each component was also obtained from
synthesis, assuming a 12.5% switching activity factor. Energy
values for schedule table and LUT/data memory accesses were
obtained from HSPICE. A read-skewed asymmetric SRAM
design is also considered, which results in an additional 40%
reduction in cell access energy [21]. Table III sums the
energies of the components by the type of MLB operation
to compute the total energy per operation.

The estimated area and leakage for an MLB were also
taken from the synthesis and HSPCIE results. The total area
is approximately 30000 um?, 46% of which is the 4-kB
LUT/data SRAM array. 17% of the area comes from the
schedule table array, 13% comes from register file, and
the remaining 24% is the MLB control and datapath logic.
The total static leakage power per MLB is about 321 uW.

In addition to the component-by-component synthesis of
the RTL model, a complete RTL model for one MLB was
created and simulated using Synopsys VCS [36] to ensure the
functional correctness of the model. A test framework using
SystemVerilog was created to apply test stimuli. Results for
a small test case were manually verified, ensuring that all the
configuration data were written to the MLB correctly and that
the LUTs produced the correct output responses.

B. FPGA Modeling

To facilitate a fair comparison with FPGA, the original
BLIF file of each application was first translated to Verilog,
and then directly compiled by Quartus II [28] onto an
Altera Stratix V (SSEEBF4512L, 0.85 V) device.

1) Latency (T): The minimum cycle time allowed for a suc-

cessful mapping with fast silicon high temperature (fast
850 mV 100C) model.

TABLE IV

ENFIRE MAPPING RESULTS, INCLUDING THE NUMBER
OF CYCLES, MLBS, OPERATIONS BY TYPE,
AND LUT MEMORY REQUIREMENTS

App. 8x1 8x2 8x4 8x8 Total MOVE Total LUT Mem.
LUTs LUTs LUTs LUTs LUTs Op. Cycle (kB)

c432 10 3 8 1 22 5 11 1.75
c880 27 9 7 0 43 2 6 2.28
c1355 12 21 1 0 34 4 5 1.81
c1908 1 4 15 10 30 13 13 4.66
c2670 24 16 13 14 67 10 6 6.88
¢3540 99 33 5 4 141 48 14 6.78
c5315 81 42 18 11 152 46 10 10.16
c6288 0 3 85 50 138 42 43 23.31
c7552 96 26 31 21 174 59 11 13.75
alud 40 8 3 5 56 15 10 3.38
apex2 75 56 24 18 173 106 22 13.34
apex4 0 2 8 3 13 4 3 1.88
des 170 88 6 2 266 27 12 12.06
e64 0 0 0 10 10 0 10 2.50
ex5p 0 0 0 8 8 0 1 2.00
misex3 134 5 7 17 163 57 10 9.63
pdc 82 69 42 30 223 154 25 19.63
seq 270 14 5 29 318 139 21 17.19
spla 83 88 54 37 262 166 26 24.09

2) Power (P): A default toggle rate of 12.5% for both
FPGA (PowerPlay [37]) and ENFIRE. In PowerPlay’s
report, three components (combinational cell, clock
enable block, and register cell) are calculated into total
power.

3) Energy (E): Total power multiplied by latency.

4) Area (A): We consider logic array block (LAB) area [38]
and scale the results to a 32-nm process. The reported
area estimates for the LABs include routing area, so that
is not accounted for separately. This number is then
multiplied by the number of utilized LABs reported by
Quartus to compute the total effective area.

5) Leakage (L): The core static power dissipation reported
by PowerPlay multiplied by the percent of total core area
used. The leakage energy is then calculated as leakage
power x latency.

VI. RESULTS

Table IV shows the ENFIRE mapping results for the ISCAS
and MCNC benchmarks, as generated by the mapping tool
described in Section IV. The energy, latency, area, and leakage
estimates are based on these results. In general, small applica-
tions with less complexity will require fewer operations, fewer
MLBs, and fewer extra MOVE:s to finish the task. For example,
c432 is a small application, requiring 22 LUTSs across two
MLBs, and therefore has fewer extra MOVEs and requires
fewer cycles than larger applications. Conversely, large appli-
cations are expected to have higher complexity, and hence
require more operations, more MLBs, more extra MOVEs,
and more cycles. For example, seq has 318 LUTs, requiring
16 MLBs. The des application requires many operations, but
only 27 extra MOVEs and 12 cycles, since most operations
can be processed in parallel. Conversely, c6288 requires only
five MLBs, but requires many cycles, since most operations
are sequential.

Figs. 7-9 show the comparison results between
ENFIRE and FPGA. Although energy consumption is our
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primary concern, we also consider latency, area, and leakage,
as well as energy-delay product (EDP) and a unified energy
efficiency (UEE) metric, calculated as operation per energy
per area. Since the same work load is performed in both
ENFIRE and FPGA, the operation component simplifies to 1,
leaving UEE as 1/(E x A).

Geometric means are used to get the EDP and UEE average
over all applications. These two metrics are based on the prod-
uct of other metrics, since the product may generate a bigger
range for comparison. With geometric means, the ranges being
averaged are normalized. One application will not dominate
the average value, and the changes in all applications have the
same effect on the mean value.

A. Energy and Latency Comparison

Comparison of energy between ENFIRE and FPGA
is presented in Fig. 7(a) using the methods described
in Sections V-A and V-B. ENFIRE energy is expected to
be lower due to the spatio-temporal computing model, which

(higher is better) and (b) area.

reduces the PI requirement, consuming an average 7.6 less
energy than FPGA. Similarly, the latency comparison is pre-
sented in Fig. 7(b). ENFIRE latency is expected to be higher
than FPGA, again due to the computing model. The fusion
stage of the software flow helps improve execution latency,
since multiple fused functions can be computed in a single
cycle. On average, FPGA latency is 2.4 x better than ENFIRE.

B. EDP and Leakage Comparison

Comparison of EDP between ENFIRE and FPGA is
presented in Fig. 8(a). ENFIRE improves on energy, but
suffers a decline on latency compared with FPGA. Despite
this, the energy improvement is sufficient, such that ENFIRE
generally demonstrates EDP improvement over FPGA. One
exception is in the sequential applications like c6288, pdc, seq,
and spla, where the ENFIRE results are worse than the FPGA
due to the latency. Note that the EDP of some applications,
especially those that are more sequential in nature, is domi-
nated by latency rather than energy. Applications in FPGA are
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mapped as purely combinational logic, whereas in ENFIRE,
every operation requires one full cycle whether the operation
is simple or complex, and the same execution overhead applies
in both cases. Because of the optimized mapping procedure,
this is generally favorable to ENFIRE. Since EDP is a product
relation of energy and latency, the geometric mean is taken,
resulting in an average improvement of 1.6x over FPGA.

In addition, Fig. 8(b) shows the leakage energy
comparison computed using the methods described in
Sections V-A and V-B, respectively. Both latency and
area contribute to the leakage; thus, in the cases where
ENFIRE has lower latency and/or lower area, we observe an
improvement in leakage energy over FPGA. Examples include
apex4 and ex5p, which have better leakage due to the latency
improvement, and c2670, apex4, and e64, which consume
fewer resources, and thus less area compared with FPGA.
On average, ENFIRE has a 1.1x improvement in leakage
energy over FPGA.

C. Area and UEE Comparison

The UEE comparison is presented in Fig. 9(a) using the
values generated from the ENFIRE area model and FPGA
area estimation (Sections V-A and V-B). Fig. 9(b) shows the
area results comparison. On average, the ENFIRE requires
1.2x less area than the FPGA. For most applications, ENFIRE
demonstrates an average improvement of 5.3 x in UEE, losing
only by a small margin on three applications, despite the
fact that only the FPGA LAB area was considered in the
computation, whereas the entire MLB area was considered,
even if only a small portion the MLLB was used, but was nev-
ertheless included in the computation. Per-application memory
utilization is shown in Table IV. In addition, we note that while
the FPGA area utilization is purely for computation, the MLB
area includes memory, which is used for both computation
(as an LUT) and data storage. From this, it follows that the
effective computation area for ENFIRE will be less than that
shown in Fig. 9. Finally, we note the VLIW capabilities of
the ENFIRE datapath, which may not always be fully utilized
in heavily sequential applications, but can be leveraged in
applications amenable to parallelization.

D. Resource Comparison

Table V shows the hardware resource comparison. The
ENFIRE contains fewer MLBs than the FPGA adaptive logic
modules (ALMs). This is due to two reasons: first, ENFIRE
has four types of LUTs (Section III), and each LUT is capable
of storing a larger number of function outputs; second, each
MLB can have up to 32 LUTs, while the ALM can contain
at most two adaptive LUTs. As a spatio-temporal framework,
the ENFIRE also contains fewer interconnects than FPGA.
Spatial computing in ENFIRE is realized using communica-
tion buses in a hierarchal interconnect, thus mitigating the
PI bottleneck in FPGA.

E. Scalability Analysis

As previously mentioned, scalability at the future technol-
ogy nodes is a major research area for the FPGAs, and it

TABLE V
RESOURCE COMPARISON BETWEEN ENFIRE AND FPGA MAPPING

App. ENFIRE FPGA
#MLBs #PIs # ALMs # PIs
432 2 8 40 500
880 5 32 61 966
cl355 5 32 36 1341
c1908 3 8 45 669
€2670 16 48 126 2351
3540 16 48 167 2282
¢5315 16 48 170 4347
c6288 5 32 367 2699
c7552 16 48 210 5725
alud 7 32 110 830
apex2 16 48 328 3379
apex4 4 8 373 3714
des 16 48 292 11036
e64 1 8 59 1571
ex5p 4 8 145 2359
misex3 16 48 240 1893
pde 16 48 752 10173
seq 16 48 400 4519
spla 16 48 700 7656
TABLE VI

SCALABILITY COMPARISON BETWEEN 32- AND
22-nm IMPLEMENTATIONS OF
ENFIRE AND FPGA

Metric 32nm Improvement  22nm Improvement
Energy +7.6X +11.8X
Latency 24X ! -2.3X

EDP +1.6X +2.4X

Area +1.2X +1.0X
Leakage +1.1X +2.2X

UEE +5.3X +6.6X

has been shown that the PI architecture reduces the FPGA
scalability. Therefore, we have investigated the scalability of
the ENFIRE framework at the 22-nm node, where we expect
the energy-efficiency improvement to increase compared with
FPGA. The 22-nm model for ENFIRE is calculated by scaling
with an industrial scaling factor [39]. The FPGA results
are generated in Quartus II using a 20 nm Arria 10 FPGA
(model number 10AX115U3F4512SGES). Table VI shows the
ENFIRE and FPGA scalability comparison results between
32- and 22-nm technology. ENFIRE has an 11.8x improve-
ment in energy, a 2.4x improvement in EDP, and
a 6.6 x improvement in UEE, which by comparison are greater
than the improvements at the 32-nm node.

VII. CONCLUSION

In this paper, we have presented ENFIRE, a novel
reconfigurable framework suitable for fine-grained bit-level
manipulation. A corresponding software mapping flow has
been developed to effectively map diverse applications into
this framework. To the best of our knowledge, this is the first
example of a fine-grained reconfigurable spatio-temporal com-
puting framework capable of FPGA-style application mapping.
Our analysis with a set of random logic benchmarks show
significant improvement in energy efficiency compared with a
commercial FPGA at the same process node. ENFIRE uses
high-density 2-D SRAM to store not only data but also multi-
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input, multi-output LUTs. Since the design of the nanoscale
memory array and its density are minimally affected, the pro-
posed architecture can easily exploit the benefits of emerging
memory technologies. The application mapping tool identifies

the

right balance between spatial and temporal computing

to optimize performance. It also enables a user to effec-
tively tradeoff performance with energy or resource utiliza-
tion. ENFIRE’s sparse bus interconnect also has a much
lower impact on overall energy and scalability than the
FPGA PI architecture. Comparison results with FPGA demon-
strate considerable average improvement in energy (7.6x),
EDP (1.6x), and UEE (5.3x). Future work will include
investigations on mapping complex algorithmic tasks, such
as applications in the digital signal processing and machine
learning domains, which are amenable to spatio-temporal
computing. Evaluation of ENFIRE with emerging memory
technologies along with its silicon validation through test chip
fabrication is also potential research directions.
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