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Abstract— Implantable systems that monitor biological sig-
nals require increasingly complex digital signal processing
(DSP) electronics for real-time in-situ analysis and compression
of the recorded signals. While it is well-known that such signal
processing hardware needs to be implemented under tight
area and power constraints, new design requirements emerge
with their increasing complexity. Use of nanoscale technology
shows tremendous benefits in implementing these advanced
circuits due to dramatic improvement in integration density
and power dissipation per operation. However, it also brings
in new challenges such as reliability and large idle power (due
to higher leakage current). Besides, programmability of the
device as well as security of the recorded information are
rapidly becoming major design considerations of such systems.
In this paper, we analyze the emerging issues associated with
the design of the DSP unit in an implantable system. Next,
we propose a novel ultra light-weight solution to address the
information security issue. Unlike the conventional information
security approaches like data encryption, which come at large
area and power overhead and hence are not amenable for
resource-constrained implantable systems, we propose a multi-
level key-based scrambling algorithm, which exploits the nature
of the biological signal to effectively obfuscate it. Analysis of the
proposed algorithm in the context of neural signal processing
and its hardware implementation shows that we can achieve
high level of security with ∼ 13X lower power and ∼ 5X lower
area overhead than conventional cryptographic solutions.

I. INTRODUCTION

Implantable systems that record and manipulate biological
activity can largely benefit from in-situ real-time signal pro-
cessing. Such signal processing typically serves two major
purposes: 1) compression of recorded data; and 2) real-time
online signal analysis in order to recognize meaningful pat-
terns from recorded data. Data compression is an important
requirement for systems which wirelessly transmit recorded
signals to the external world, possibly from multiple chan-
nels, in order to drastically reduce transmission bandwidth
and power requirements. On the other hand, pattern recogni-
tion from recorded data is important in closed-loop control
systems for manipulation of body activity or drug delivery.
Such implantable systems [2] are used in diverse contexts,
ranging from sensing abnormal activity in the central nervous
system to stimulating sensory or motor neurons in the central
or peripheral nervous system. With increasing requirement of
the implantable systems to perform advanced digital signal
processing (DSP) on large volume of recorded data, there
is a growing need to develop efficient signal processing
algorithms along with their low-power, low-area hardware
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implementation. It has been shown in [1] that the system
power is dominated by the wireless transmission and that can
be reduced drastically by using complex signal processing
on-chip to reduce the volume of transmitted data. Several
researchers have studied the feasibility [3] of implementing
signal processing circuits of varying complexity inside the
implant unit.

We have previously proposed the use of a hierarchical
vocabulary-based neural pattern recognition algorithm [4]
which can be efficiently implemented on-chip within the
implant while satisfying the power and area bounds [5]. It has
been shown that nanotechnology shows tremendous potential
in implementing such systems due to large benefits in terms
of integration density and switching power. However, it
also brings in new design challenges such as reliability
of operation due to the reduced robustness of nanoscale
switches and increased leakage power of these switches. Fur-
thermore, programmability of the implantable device in order
to dynamically adapt to the changing functional requirements
is becoming an important design parameter. Finally, security
of the recorded information, when the signal is wirelessly
transmitted outside the body, is emerging as an important
requirement.

We note that these issues can be solved in an efficient
manner by exploiting the nature of the data and/or the signal
processing algorithm under consideration, instead of using
conventional design techniques or hardware components
such as micro-controller or DSP processor. In this paper,
we focus on the emerging issue of information security
in implantable systems. With pervasive use of implantable
monitoring systems and increasing need for wireless trans-
mission of the sensed data, these systems are being increas-
ingly vulnerable to snooping attack by potential adversaries.
However, data protection needs to come at extremely low
power and area overhead, which is difficult to achieve by
using conventional data encryption solutions. We propose a
novel low-cost multi-level key-based obfuscation technique
that exploits the nature of the recorded biological signal
to protect it from possible attacks. The proposed approach
scrambles the data at multiple levels using separate secret
keys at minimal hardware overhead, compared to a conven-
tional cryptography technique, namely advanced encryption
standard (AES).

II. DESIGN ISSUES

The major design challenges for signal processing elec-
tronics in an implantable system are highlighted in Fig. 1.
The first two parameters, die-area and power, are important
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Fig. 1. Design parameters for implantable systems. Reliability, reconfig-
urability and security are emerging as important design parameters.

and have been widely addressed by existing work. The die-
area is important since the packaged system should have
a small form factor. On the other hand, ultra-low power
operation is required to enable long-term operation using
the embedded battery as well as to avoid tissue damage
due to power-density induced temperature rise. The other
emerging issues in bio-implantable systems are reliability,
reconfigurability and security.

1) Reliability: While nanotechnology (sub-100nm feature
size) is an attractive option for the design of DSP unit in
implantable systems, it suffers from reduced reliability and
yield due to lower noise margin and variations in process pa-
rameters. Furthermore, temporal parameter variations (due to
environmental variations and device aging effects) also affect
robustness of operation. Low power design techniques such
as voltage scaling, gate sizing and power gating accentuate
the reliability issues. Conventionally one needs to follow a
worst-case design approach to avoid failures due to process
and temporal variations, which are intrinsic to nanometer
technologies. However, such a pessimistic design approach
considerably compromises power dissipation and die area.
The reliability issues can be handled at low area and power
overhead by exploiting the nature of the signal processing
algorithm. One effective solution to address the reliability
and yield issues is to use variation-resilient design techniques
such as Preferential Design [5]. In this approach, the critical
components in terms of performance are designed with
more relaxed timing margin than non-critical ones. Possible
variation-induced failures are confined to non-critical com-
ponents of the system, thus allowing graceful degradation in
performance under variations. Further, due to higher timing
margin in critical components, the system becomes suitable
for application of low power design techniques.

2) Reconfigurability: The next important design issue for
implementing signal processing algorithms in implantable
systems is reconfigurability for tuning functionality during
deployment. Variations in the nature of biological signals
from patient-to-patient and temporal variations in signal and
noise characteristics for the same patient requires calibration
and tuning of the various parameters or changing function-
ality. To achieve this, one can use software reconfigurability,
where the algorithm is coded in an embedded microproces-
sor [2] or use hardware reconfigurable platforms such as

Field Programmable Gate Array (FPGA). But both options
are not possible under the area and power budget allowable
by implantable systems. This necessitates the investigation
of alternative reconfigurable architectures such as Memory
Based Computing (MBC) [6], which can be used to imple-
ment a particular algorithm within the area, power and per-
formance bound, but keeps the option of reconfigurability in
order to suit patient-to-patient and temporal variability. Such
reconfigurable computing framework uses a dense memory
array as underlying computing element, leading to over 2X
power reduction at iso-performance compared to state-of-
the-art FPGA [6]. In order to satisfy the area and power
constraints, one can use a judicious mix of reconfigurable
memory-based computing and custom logic blocks which
can give us the required adaptability.

3) Security: Security is another emerging issue in im-
plantable system design. In the rest of the paper, we will
describe a lightweight solution for protecting the system from
malicious attacks by an adversary.

III. LIGHT-WEIGHT SECURITY SOLUTION

Recently, researchers have articulated security concerns
about implantable medical devices which use wireless com-
munication protocols [7]. The lack of authentication and
integrity mechanisms put patients at risk from attack by
anyone with a transceiver. Various security threats consider-
ing different aspects of the implantable device usage have
been described in [8]. For example, the security of data
communicated over a wireless interface can be compromised.
An attacker can eavesdrop on the wireless communication
channel in order to get access to sensed data. For implantable
stimulation/drug-delivery systems, the attacker can initiate
malicious control signals leading to malfunction, injury or
even death. For the first scenario, it is useful to encrypt
the data based on a secure key to prevent it from being
understood by snoopers. For the second scenario, one can
use an authentication key to ensure that the input commands
are coming from a safe and valid source.

Fig. 2. Main steps for biological signal processing algorithm. The inclusion
of security as a part of the main flow enables us to use low-overhead
design approaches to achieve security against possible attacks. The key-
based scrambling for data obfuscation can be performed at three levels to
achieve higher protection against snooping attacks.
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Next, we describe a light-weight obfuscation scheme for
countering the first attack scenario by by exploiting the
nature of the algorithm, as an alternative to conventional
resource-hungry encryption. The main steps for the proposed
hierarchical key-based data security algorithm are shown
in Fig. 2. The inclusion of security as a main step of the
algorithm helps us achieve a low-overhead solution. By using
multiple levels of scrambling to obfuscate the neural data
using several keys, we also achieve high levels of information
security. For the neural spike detection and vocabulary-
based analysis which we consider as an example implantable
system, the following properties are particularly useful. The
neural signal consists of low frequency signal, which is char-
acterized by intermittent bursts of sharp events called spikes
(which allows us to use wavelet transform for de-noising)
and the repetitive nature of these patterns helps us develop a
vocabulary-based algorithm [4] for neural data compression
and efficient neural data analysis. We can obfuscate the
data in an output packet by scrambling the channel number,
the alphabet symbol used for vocabulary encoding and the
wavelet coefficients used to describe a particular symbol. We
use different encodings for different parts of a packet and use
a key-based approach for scrambling the data in each part
so that only a transceiver with the correct key can accurately
decode the signal.

Permutation is a traditional technique to scramble various
types of signals for providing security during transmission.
For example, a scrambling algorithm based on permutation of
Fast Fourier Transform (FFT) coefficients was proposed for
speech encryption in [10]. However, a logic implementation
of the permutation algorithm consumes too much area and
power to be suitable for implantable circuits. On the other
hand, if we consider all possible permutations of a particular
set of data, and use a pseudo-random key of sufficient length
to denote the order of permutation to be used for encoding
each packet, it allows us to explode the search space for an
attacker using brute-force techniques to break the scheme.
Here, we use two levels of encoding, by using one key
to denote the particular order of scrambling and a second
level of key to change the order for each packet. Also, the
hardware overhead can be minimized by storing only the
required permutations for a particular value of the key. For
example if the key has 16 characters, we need to consider
storage of 16 different permutations of the symbols. The
storage is done in a 16-row memory, which is actually a
lookup table. Each row in the lookup table is a particular
permutation of all the neural signal symbols.

1) Security Analysis: For analyzing the number of trials
taken to break the encoding by brute-force approaches,
we consider one level of key-based obfuscation used for
encoding the alphabet symbols of the vocabulary. Initially,
the vocabulary symbols correspond to the binary encoding of
the location of each symbol. If we consider the vocabulary
size to be 32, we need 5 bits to encode the symbol. We can
arrange 32 values in 32! = 2.63×1035 possible permutations.
If we have to choose 16 out of these possible permutations,
we have (32!)16 = 5.3× 10566 possible key values if we

Fig. 3. Lookup table structure to implement one level of data scrambling.

allow repetitions. The number of trials for identifying the
correct key by brute force is impossibly large compared to
2128 = 3.4×1038, which is the number of trials required to
break a 128-bit key used in an AES cipher. With increasing
key length, the complexity of breaking the key by brute
force increases exponentially. Next, we show that the area
overhead increases only linearly with the key length.

2) Hardware Overhead: If we have M neural signal
symbols in the vocabulary, we have M! different permu-
tations in the lookup table (LUT). Generally, the value of
M is nontrivial, making M! too large for implementation.
However, we can choose some of the M! permutations to
build the LUT, which will not affect the security level too
much, given that the number of permutations is not less than
the size of the key. Here we choose M = 32, which, from
our experience, is a reasonable value for encoding symbols
in neural signals. We set our key length to be 16 characters,
where each character denotes one of the 32! permutations
in total. If we store all the permutations in the lookup table
while taking into consideration the fact that each symbol is
represented with 5 bits, the total size of the lookup table
would be 32!× 32× 5 bit, which is 5.14× 1033 kB, which
is impossible to implement. However, we note that since
the key is one-time configurable for each device, we need
to store only 16 out of all the 32! permutations in the
lookup table. Now, the size of the lookup table becomes
16× 32× 5 bits (= 2560 bits), which is a feasible memory
size for implantable circuits. By custom design, we can
reduce the overhead for the peripheral circuitry needed for
accessing the different values stored in the memory. In fact,
the peripheral hardware we need is merely a 4 bit counter

TABLE I
COMPARISON OF HARDWARE OVERHEAD FOR OUR SCHEME WITH AES.

Circuit / Sub-circuits Area (µm2) Power (µW)

Conventional AES (1 V, 100 MHz) 76502.95 20530
Scheme AES (0.7 V, 2 MHz) 76502.95 410

5:32 decoder 189.23 0.03
Proposed 6:64 decoder 325.23 0.04

Data 7:128 decoder 570.29 0.05
Scrambling 4-bit binary counter 120.96 0.04

Scheme 4:16 decoder 103.39 0.02
SRAM (All 3 LUTs) 13655.90 30.87
Total 14965.01 31.05

Percentage Reduction 80.44% 92.4%
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Fig. 4. The effect of scrambling on four channels of neural signal. After
each level of scrambling, the output signal gets obfuscated, where the
information content is completely distorted.

with 4-to-16 bit decoder for row selection, since we need to
access the memory serially one row at a time. The random
access of each symbol from a row is managed by using a
5-to-32 bit column select decoder, which also allows us to
share the sense amplifiers between the same bits of each
symbol, since only one symbol needs to be read at a time.
The hardware implementation scheme for symbol scrambling
is shown in Fig. 3. The look-up tables for encoding different
parts of the packet using different keys can be combined
into a single memory array with shared serial-row access
circuitry. We present the area and power results in the next
section.

IV. SIMULATION RESULTS

We created SPICE netlists corresponding to different cir-
cuits and performed power simulations using 70nm Predic-
tive Technology Model (PTM) [12]. For comparison pur-
poses, we take a low-power implementation of an AES
circuit as an example. Assume we have 64 neural signal
channels to record, and the sampling frequency is 25 kHz.
We have 2.5× 106 samples to process per second. Equiva-
lently, we need to process 25 samples in 10−5 seconds. If
each sample is an 8 bit wavelet coefficient, we have 25×8 =
200 bits to process in every 10−5 seconds. Since 10-stage
pipelined AES can process 128 bits in 10 cycles, for 200
bits, around 20 operating cycles are needed. Therefore the
AES working frequency should be 20/(10−5) = 2 MHz. We
used voltage scaling and threshold voltage scaling to reduce
dynamic and leakage power. For the proposed approach,
we need three column select decoders of different sizes
corresponding to the three different regions of the packet.
Also, the LUT size was taken to be 16× ((32× 5)+ (64×
6) + (128× 7)) = 23040 bits = 2.8 kB. Compared to the
huge power consumption of low-power AES, we obtain only
31µW for an SRAM-based implementation of the look-up
table. The area and power values for conventional AES, low-
power AES and the different sub-circuits used for our scheme
are shown in Table I. The results of data scrambling at mul-
tiple levels for a 4-channel neural signal are shown in Fig. 4.
The signal is recorded from four nerves in the buccal gan-
glion of a sea-slug (Aplysia californica). It can be observed

that the obfuscated data still contains spike-like waveforms
but the information is completely mis-represented, causing
the attacker to gain only wrong information. However, the
transceiver with the correct key can accurately de-obfuscate
the data and get the correct information.

V. CONCLUSION

In this paper we have analyzed the emerging design issues
such as reliability, configurability and security in realizing
the digital signal processing unit in implantable systems.
With increasing need to incorporate advanced signal process-
ing capability in implantable devices, these parameters would
be increasingly important to consider along with area and
power criteria. We have noted that instead of using conven-
tional design approaches, one can exploit the nature of signal
processing algorithms and the recorded signals to address
the emerging design requirements under tight power/area
constraints. We have extended this design philosophy to
implement an ultra light-weight data protection algorithm
for wireless implantable systems. The proposed algorithm
exploits the bursty nature of the biological data with repeat-
ing symbols to achieve effective obfuscation of recorded data
during the encoding and packet creation process. We have
shown that, compared to existing encryption algorithms, such
an obfuscation process can significantly reduce the hardware
overhead. Future investigation will include application of the
security solution to other implantable system applications
and hardware validation of the algorithms through test chip
fabrication and measurement.
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